Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
41 result(s) for "Saulnier, Denis"
Sort by:
Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system
Background Biofloc technology (BFT), a rearing method with little or no water exchange, is gaining popularity in aquaculture. In the water column, such systems develop conglomerates of microbes, algae and protozoa, together with detritus and dead organic particles. The intensive microbial community presents in these systems can be used as a pond water quality treatment system, and the microbial protein can serve as a feed additive. The current problem with BFT is the difficulty of controlling its bacterial community composition for both optimal water quality and optimal shrimp health. The main objective of the present study was to investigate microbial diversity of samples obtained from different culture environments (Biofloc technology and clear seawater) as well as from the intestines of shrimp reared in both environments through high-throughput sequencing technology. Results Analyses of the bacterial community identified in water from BFT and “clear seawater” (CW) systems (control) containing the shrimp Litopenaeus stylirostris revealed large differences in the frequency distribution of operational taxonomic units (OTUs). Four out of the five most dominant bacterial communities were different in both culture methods. Bacteria found in great abundance in BFT have two principal characteristics: the need for an organic substrate or nitrogen sources to grow and the capacity to attach to surfaces and co-aggregate. A correlation was found between bacteria groups and physicochemical and biological parameters measured in rearing tanks. Moreover, rearing-water bacterial communities influenced the microbiota of shrimp. Indeed, the biofloc environment modified the shrimp intestine microbiota, as the low level (27 %) of similarity between intestinal bacterial communities from the two treatments. Conclusion This study provides the first information describing the complex biofloc microbial community, which can help to understand the environment-microbiota-host relationship in this rearing system.
Temperature and Food Influence Shell Growth and Mantle Gene Expression of Shell Matrix Proteins in the Pearl Oyster Pinctada margaritifera
In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control.
Large-Scale Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster Crassostrea gigas and Correlation Between Virulence and Metalloprotease-like Activity
A 4-year bacteriological survey (2003-2007) of four molluscs cultivated in France and faced with mortality episodes was performed by the French shellfish pathology network. The more abundant bacteria isolated during 92 mortality episodes, occurring mainly in Pacific oyster Crassostrea gigas, were identified by genotyping methods. It allowed us both to confirm the representativeness of Vibrio splendidus and Vibrio aestuarianus bacterial strains and to identify both a large number of Vibrio harveyi-related strains mainly detected during 2007 oyster mortality outbreaks and to a lesser extent bacterial strains identified as Shewanella colwelliana. Because metalloprotease has been reported to constitute a virulence factor in a few Vibrio strains pathogenic for C. gigas, several bacterial strains isolated in this study were screened to evaluate their pathogenicity in C. gigas spat by experimental infection and their ability to produce metalloprotease-like activity in the culture supernatant fluids. A high level (84%) of concordant results between azocaseinase activities and virulence of strains was obtained in this study. Because bacterial metalloprotease activities appeared as a common feature of pathogenic bacteria strains associated with mortality events of C. gigas reared in France, this phenotypic test could be useful for the evaluation of virulence in bacterial strains associated with such mortality episodes.
Quorum Sensing Inhibitory and Antifouling Activities of New Bromotyrosine Metabolites from the Polynesian Sponge Pseudoceratina n. sp
Four new brominated tyrosine metabolites, aplyzanzines C–F (1–4), were isolated from the French Polynesian sponge Pseudoceratina n. sp., along with the two known 2-aminoimidazolic derivatives, purealidin A (5) and 6, previously isolated, respectively, from the sponges Psammaplysilla purpurea and Verongula sp. Their structures were assigned based on the interpretation of their NMR and HRMS data. The compounds exhibited quorum sensing inhibition (QSi) and antifouling activities against several strains of bacteria and microalgae. To our knowledge, the QSi activity of this type of bromotyrosine metabolite is described here for the first time.
Influence of water temperature and food on the last stages of cultured pearl mineralization from the black-lip pearl oyster Pinctada margaritifera
Environmental parameters, such as food level and water temperature, have been shown to be major factors influencing pearl oyster shell growth and molecular mechanisms involved in this biomineralization process. The present study investigates the effect of food level (i.e., microalgal concentration) and water temperature, in laboratory controlled conditions, on the last stages of pearl mineralization in order to assess their impact on pearl quality. To this end, grafted pearl oysters were fed at different levels of food and subjected to different water temperatures one month prior to harvest to evaluate the effect of these factors on 1) pearl and shell deposition rate, 2) expression of genes involved in biomineralization in pearl sacs, 3) nacre ultrastructure (tablet thickness and number of tablets deposited per day) and 4) pearl quality traits. Our results revealed that high water temperature stimulates both shell and pearl deposition rates. However, low water temperature led to thinner nacre tablets, a lower number of tablets deposited per day and impacted pearl quality with better luster and fewer defects. Conversely, the two tested food level had no significant effects on shell and pearl growth, pearl nacre ultrastructure or pearl quality. However, one gene, Aspein, was significantly downregulated in high food levels. These results will be helpful for the pearl industry. A wise strategy to increase pearl quality would be to rear pearl oysters at a high water temperature to increase pearl growth and consequently pearl size; and to harvest pearls after a period of low water temperature to enhance luster and to reduce the number of defects.
Genetic diversity and population structure of Tenacibaculum maritimum, a serious bacterial pathogen of marine fish: from genome comparisons to high throughput MALDI-TOF typing
Tenacibaculum maritimum is responsible for tenacibaculosis, a devastating marine fish disease. This filamentous bacterium displays a very broad host range and a worldwide geographical distribution. We analyzed and compared the genomes of 25 T. maritimum strains, including 22 newly draft-sequenced genomes from isolates selected based on available MLST data, geographical origin and host fish. The genome size (~3.356 Mb in average) of all strains is very similar. The core genome is composed of 2116 protein-coding genes accounting for ~75% of the genes in each genome. These conserved regions harbor a moderate level of nucleotide diversity (~0.0071 bp −1 ) whose analysis reveals an important contribution of recombination (r/m ≥ 7) in the evolutionary process of this cohesive species that appears subdivided into several subgroups. Association trends between these subgroups and specific geographical origin or ecological niche remains to be clarified. We also evaluated the potential of MALDI-TOF-MS to assess the variability between T. maritimum isolates. Using genome sequence data, several detected mass peaks were assigned to ribosomal proteins. Additionally, variations corresponding to single or multiple amino acid changes in several ribosomal proteins explaining the detected mass shifts were identified. By combining nine polymorphic biomarker ions, we identified combinations referred to as MALDI-Types (MTs). By investigating 131 bacterial isolates retrieved from a variety of isolation sources, we identified twenty MALDI-Types as well as four MALDI-Groups (MGs). We propose this MALDI-TOF-MS Multi Peak Shift Typing scheme as a cheap, fast and an accurate method for screening T. maritimum isolates for large-scale epidemiological surveys.
Plastic is in the details: the impact of plastic pollution through a mesocosm experiment
Microbial diversity plays key role in marine ecosystems, and quantifying the impact of plastic pollution on these organisms is essential to better anticipate and manage threats to these fragile ecosystems. In nine simplified tropical ecosystems (i.e. mesocosms), we tested a concentration gradient of macroplastics reflecting the amount of plastic released by pearl farms. In each mesocosm, we collected bacterial samples from three different compartments: macroplastics, water and animals, Tridacna maxima . The objective was to test how plastic concentration influences the bacterial community, whether certain bacteria respond similarly across these compartments, and to define a threshold concentration of plastic that would impact marine bacteria. We observed that over 70 % of the variability in the bacterial community was explained by the type of sample (51.8 %) and time (19.4 %). On a finer scale, we found that the abundance of 33 bacterial genera was significantly correlated with plastic pollution, with the highest concentration (4.05 g/L) accounting for the vast majority of the signal. The occurrence of these bacterial genera increased with high plastic concentrations, suggesting imbalanced competitive relationships favoring less pollutant-sensitive genera. Some of these bacteria were shared across compartments and have known ecological functions, including plastic degradation and pathogenicity. Our results align with prior studies that warn plastics can alter microbial interactions and promote the emergence of pathogenic families.
Symbiodinium clades A and D differentially predispose Acropora cytherea to disease and Vibrio spp. colonization
Coral disease outbreaks have increased over the last three decades, but their causal agents remain mostly unclear (e.g., bacteria, viruses, fungi, protists). This study details a 14‐month‐long survey of coral colonies in which observations of the development of disease was observed in nearly half of the sampled colonies. A bimonthly qPCR method was used to quantitatively and qualitatively evaluate Symbiodinium assemblages of tagged colonies, and to detect the presence of Vibrio spp. Firstly, our data showed that predisposition to disease development in general, and, more specifically, infection by Vibrio spp. in Acropora cytherea depended on which clades of Symbiodinium were harbored. In both cases, harboring clade D rather than A was beneficial to the coral host. Secondly, the detection of Vibrio spp. in only colonies that developed disease strongly suggests opportunistic traits of the bacteria. Finally, even if sporadic cases of switching and probably shuffling were observed, this long‐term survey does not suggest specific‐clade recruitment in response to stressors. Altogether, our results demonstrate that the fitness of the coral holobiont depends on its initial consortium of Symbiodinium, which is distinct among colonies, rather than a temporary adaptation achieved through acquiring different Symbiodinium clades. Role of Symbiodinium clades in coral resistance of Acropora cytherea against white syndrome disease and Vibrio app. colonization. Clade D rather than clade A is beneficial to their coral host face to the disease and Vibrio app. colonization. Acropora cytherea white syndrome disease and Vibrio spp. colonization did not induce specific clade switching or shuffling.
First Isolation of Virulent Tenacibaculum maritimum Isolates from Diseased Orbicular Batfish (Platax orbicularis) Farmed in Tahiti Island
The orbicular batfish (Platax orbicularis), also called ‘Paraha peue’ in Tahitian, is the most important marine fish species reared in French Polynesia. Sudden and widespread outbreaks of severe ‘white-patch disease’ have occurred since 2011 in batfish farms one to three weeks after the transfer of juveniles from bio-secured hatcheries to lagoon cages. With cumulative mortality ranging from 20 to 90%, the sustainability of aquaculture of this species is severely threatened. In this study, we report for the first time the isolation from diseased batfish of several isolates belonging to the species Tenacibaculum maritimum, a major pathogen of many marine fish species. Histopathological analysis, an experimental bath challenge and a field monitoring study showed that T. maritimum is associated with ‘white-patch disease’. Moreover, molecular and serological analyses performed on representative isolates revealed some degree of genetic diversity among the isolates, a finding of primary importance for epidemiological studies and the development of management and control strategies such as vaccination.
Hemolymph microbiota and immune effectors’ expressions driven by geographical rearing acclimation of the aquacultured Penaeus stylirostris
Background In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis. Indeed, the hemolymph harbors the factors involved in the animal homeostasis that interacts with the microbiota, the immunity. In the Southwest Pacific, the high economical valued shrimp Penaeus stylirostris is reared in two contrasted sites, in New Caledonia (NC) and in French Polynesia (FP). Results We characterized the active microbiota inhabiting the hemolymph of shrimps while considering its stability during two seasons and at a one-month interval and evidenced an important microbial variability between the shrimps according to the rearing conditions and the sites. We highlighted specific biomarkers along with a common core microbiota composed of 6 ASVs. Putative microbial functions were mostly associated with bacterial competition, infections and metabolism in NC, while they were highly associated with the cell metabolism in FP suggesting a rearing site discrimination. Differential relative expression of immune effectors measured in the hemolymph of two shrimp populations from NC and FP, exhibited higher level of expression in NC compared to FP. In addition, differential relative expression of immune effectors was correlated to bacterial biomarkers based on their geographical location. Conclusions Our data suggest that, in Pacific shrimps, both the microbiota and the expression of the immune effectors could have undergone differential immunostimulation according to the rearing site as well as a geographical adaptative divergence of the shrimps as an holobiont, to their rearing sites. Further, the identification of proxies such as the core microbiota and site biomarkers, could be used to guide future actions to monitor the bacterial microbiota and thus preserve the productions.