Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
170
result(s) for
"Savage, Harry"
Sort by:
Using targeted next-generation sequencing to characterize genetic differences associated with insecticide resistance in Culex quinquefasciatus populations from the southern U.S
2019
Resistance to insecticides can hamper the control of mosquitoes such as Culex quinquefasciatus, known to vector arboviruses such as West Nile virus and others. The strong selective pressure exerted on a mosquito population by the use of insecticides can result in heritable genetic changes associated with resistance. We sought to characterize genetic differences between insecticide resistant and susceptible Culex quinquefasciatus mosquitoes using targeted DNA sequencing. To that end, we developed a panel of 122 genes known or hypothesized to be involved in insecticide resistance, and used an Ion Torrent PGM sequencer to sequence 125 unrelated individuals from seven populations in the southern U.S. whose resistance phenotypes to permethrin and malathion were known from previous CDC bottle bioassay testing. Data analysis consisted of discovering SNPs (Single Nucleotide Polymorphism) and genes with evidence of copy number variants (CNVs) statistically associated with resistance. Ten of the seventeen genes found to be present in higher copy numbers were experimentally validated with real-time PCR. Of those, six, including the gene with the knock-down resistance (kdr) mutation, showed evidence of a ≥ 1.5 fold increase compared to control DNA. The SNP analysis revealed 228 unique SNPs that had significant p-values for both a Fisher's Exact Test and the Cochran-Armitage Test for Trend. We calculated the population frequency for each of the 64 nonsynonymous SNPs in this group. Several genes not previously well characterized represent potential candidates for diagnostic assays when further validation is conducted.
Journal Article
Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis
by
Johansson, Michael A.
,
Eisen, Rebecca J.
,
Eisen, Lars
in
Accuracy
,
Aedes - pathogenicity
,
Aedes aegypti
2019
Aedes (Stegomyia) aegypti (L.) and Ae. (Stegomyia) albopictus (Skuse) mosquitoes can transmit dengue, chikungunya, yellow fever, and Zika viruses. Limited surveillance has led to uncertainty regarding the geographic ranges of these vectors globally, and particularly in regions at the present-day margins of habitat suitability such as the contiguous United States. Empirical habitat suitability models based on environmental conditions can augment surveillance gaps to describe the estimated potential species ranges, but model accuracy is unclear. We identified previously published regional and global habitat suitability models for Ae. aegypti (n = 6) and Ae. albopictus (n = 8) for which adequate information was available to reproduce the models for the contiguous U.S. Using a training subset of recently updated county-level surveillance records of Ae. aegypti and Ae. albopictus and records of counties conducting surveillance, we constructed accuracy-weighted, probabilistic ensemble models from these base models. To assess accuracy and uncertainty we compared individual and ensemble model predictions of species presence or absence to both training and testing data. The ensemble models were among the most accurate and also provided calibrated probabilities of presence for each species. The quantitative probabilistic framework enabled identification of areas with high uncertainty and model bias across the U.S. where improved models or additional data could be most beneficial. The results may be of immediate utility for counties considering surveillance and control programs for Ae. aegypti and Ae. albopictus. Moreover, the assessment framework can drive future efforts to provide validated quantitative estimates to support these programs at local, national, and international scales.
Journal Article
Heartland Virus Epidemiology, Vector Association, and Disease Potential
by
Brault, Aaron C.
,
Duggal, Nisha K.
,
Eisen, Rebecca J.
in
Amblyomma americanum
,
Animal models
,
Arachnids
2018
First identified in two Missouri farmers exhibiting low white-blood-cell and platelet counts in 2009, Heartland virus (HRTV) is genetically closely related to severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne phlebovirus producing similar symptoms in China, Korea, and Japan. Field isolations of HRTV from several life stages of unfed, host-seeking Amblyomma americanum, the lone star tick, implicated it as a putative vector capable of transstadial transmission. Laboratory vector competence assessments confirmed transstadial transmission of HRTV, demonstrated vertical infection, and showed co-feeding infection between A. americanum. A vertical infection rate of 33% from adult females to larvae in the laboratory was observed, while only one of 386 pools of molted nymphs (1930) reared from co-feeding larvae was positive for HRTV (maximum-likelihood estimate of infection rate = 0.52/1000). Over 35 human HRTV cases, all within the distribution range of A. americanum, have been documented. Serological testing of wildlife in areas near the index human cases, as well as in widely separated regions of the eastern United States where A. americanum occur, indicated many potential hosts such as raccoons and white-tailed deer. Attempts, however, to experimentally infect mice, rabbits, hamsters, chickens, raccoons, goats, and deer failed to produce detectable viremia. Immune-compromised mice and hamsters are the only susceptible models. Vertical infection augmented by co-feeding transmission could play a role in maintaining the virus in nature. A more complete assessment of the natural transmission cycle of HRTV coupled with serosurveys and enhanced HRTV disease surveillance are needed to better understand transmission dynamics and human health risks.
Journal Article
Updated Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the United States, 1995–2016
2017
Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) are potential vectors of Zika, dengue, and chikungunya viruses in the United States. A Zika virus outbreak in Florida in the summer of 2016, driven by Ae. aegypti and resulting in > 200 locally acquired cases of human illness, underscored the need for up-to-date information on the geographic distribution of Ae. aegypti and Ae. albopictus in the United States. In early 2016, we conducted a survey and literature review to compile county records for presence of Ae. aegypti and Ae. albopictus in the United States from 1995 to 2016. Surveillance for these vectors was intensified across the United States during the summer and fall of 2016. At the end of 2016, we therefore conducted a follow-up survey of mosquito control agencies, university researchers, and state and local health departments to document new collection records for Ae. aegypti and Ae. albopictus. The repeated survey at the end of the year added Ae. aegypti collection records from 38 new counties and Ae. albopictus collection records from 127 new counties, representing a 21 and 10 percent increase, respectively, in the number of counties with reported presence of these mosquitoes compared with the previous report. Moreover, through our updated survey, 40 and 183 counties, respectively, added additional years of collection records for Ae. aegypti and Ae. albopictus from 1995 to 2016. Our findings underscore the continued need for systematic surveillance of Ae. aegypti and Ae. albopictus.
Journal Article
Experimental Infection of Amblyomma americanum (Acari: Ixodidae) With Bourbon Virus (Orthomyxoviridae: Thogotovirus)
by
Burkhalter, Kristin L
,
Breuner, Nicole
,
Bosco-Lauth, Angela M
in
Amblyomma - virology
,
Amblyomma americanum
,
Animal Experimentation
2021
Abstract
Following the recent discovery of Bourbon virus (BRBV) as a human pathogen, and the isolation of the virus from Amblyomma americanum (L.) collected near the location of a fatal human case, we undertook a series of experiments to assess the laboratory vector competence of this tick species for BRBV. Larval ticks were infected using an immersion technique, and transstadial transmission of virus to the nymphal and then to the adult stages was demonstrated. Transstadially infected nymphs transmitted virus to adult ticks at very high rates during cofeeding, indicating the presence of infectious virus in the saliva of engorging ticks. Vertical transmission by transstadially infected females to their progeny occurred, but at a low rate. Rabbits fed on by infected ticks of all active life stages developed high titers of antibody to the virus, demonstrating host exposure to BRBV antigens/live virus during tick blood feeding. These results demonstrate that A. americanum is a competent vector of BRBV and indicate that cofeeding could be critical for enzootic maintenance.
Journal Article
Movement of St. Louis encephalitis virus in the Western United States, 2014- 2018
by
Garcia, Sandra
,
Brault, Aaron C.
,
Godsey, Marvin S.
in
Animals
,
Aquatic insects
,
Bayes Theorem
2020
St. Louis encephalitis virus (SLEV) is a flavivirus that circulates in an enzootic cycle between birds and mosquitoes and can also infect humans to cause febrile disease and sometimes encephalitis. Although SLEV is endemic to the United States, no activity was detected in California during the years 2004 through 2014, despite continuous surveillance in mosquitoes and sentinel chickens. In 2015, SLEV-positive mosquito pools were detected in Maricopa County, Arizona, concurrent with an outbreak of human SLEV disease. SLEV-positive mosquito pools were also detected in southeastern California and Nevada in summer 2015. From 2016 to 2018, SLEV was detected in mosquito pools throughout southern and central California, Oregon, Idaho, and Texas. To understand genetic relatedness and geographic dispersal of SLEV in the western United States since 2015, we sequenced four historical genomes (3 from California and 1 from Louisiana) and 26 contemporary SLEV genomes from mosquito pools from locations across the western US. Bayesian phylogeographic approaches were then applied to map the recent spread of SLEV. Three routes of SLEV dispersal in the western United States were identified: Arizona to southern California, Arizona to Central California, and Arizona to all locations east of the Sierra Nevada mountains. Given the topography of the Western United States, these routes may have been limited by mountain ranges that influence the movement of avian reservoirs and mosquito vectors, which probably represents the primary mechanism of SLEV dispersal. Our analysis detected repeated SLEV introductions from Arizona into southern California and limited evidence of year-to-year persistence of genomes of the same ancestry. By contrast, genetic tracing suggests that all SLEV activity since 2015 in central California is the result of a single persistent SLEV introduction. The identification of natural barriers that influence SLEV dispersal enhances our understanding of arbovirus ecology in the western United States and may also support regional public health agencies in implementing more targeted vector mitigation efforts to protect their communities more effectively.
Journal Article
Surveillance for Tick-Borne Viruses Near the Location of a Fatal Human Case of Bourbon Virus (Family Orthomyxoviridae: Genus Thogotovirus) in Eastern Kansas, 2015
2018
Bourbon virus (Family Orthomyxoviridae: Genus Thogotovirus) was first isolated from a human case-patient residing in Bourbon County, Kansas, who subsequently died. Before becoming ill in late spring of 2014, the patient reported several tick bites. In response, we initiated tick surveillance in Bourbon County and adjacent southern Linn County during spring and summer of 2015. We collected 20,639 host-seeking ticks representing four species from 12 sites. Amblyomma americanum (L.) (Acari: Ixodidae) and Dermacentor variabilis (Say) (Acari: Ixodidae) accounted for nearly all ticks collected (99.99%). Three tick pools, all composed of adult A. americanum ticks collected in Bourbon County, were virus positive. Two pools were Heartland virus (Family Bunyaviridae: Genus Phlebovirus) positive, and one was Bourbon virus positive. The Bourbon virus positive tick pool was composed of five adult females collected on a private recreational property on June 5. Detection of Bourbon virus in the abundant and aggressive human-biting tick A. americanum in Bourbon County supports the contention that A. americanum is a vector of Bourbon virus to humans. The current data combined with virus detections in Missouri suggest that Bourbon virus is transmitted to humans by A. americanum ticks, including both the nymphal and adult stages, that ticks of this species become infected as either larvae, nymphs or both, perhaps by feeding on viremic vertebrate hosts, by cofeeding with infected ticks, or both, and that Bourbon virus is transstadially transmitted. Multiple detections of Heartland virus and Bourbon virus in A. americanum ticks suggest that these viruses share important components of their transmission cycles.
Journal Article
Duplex Real-Time PCR Assay Distinguishes Aedes aegypti From Ae. albopictus (Diptera: Culicidae) Using DNA From Sonicated First-Instar Larvae
by
Byrd, Brian
,
Kothera, Linda
,
Savage, Harry M.
in
Aedes - chemistry
,
Aedes - classification
,
Aedes - genetics
2017
Aedes aegypti (L.) and Ae. albopictus (Skuse) are important arbovirus vectors in the United States, and the recent emergence of Zika virus disease as a public health concern in the Americas has reinforced a need for tools to rapidly distinguish between these species in collections made by vector control agencies. We developed a duplex real-time PCR assay that detects both species and does not cross-amplify in any of the other seven Aedes species tested. The lower limit of detection for our assay is equivalent to ~0.03 of a first-instar larva in a 60-μl sample (0.016 ng of DNA per real-time PCR reaction). The assay was sensitive and specific in mixtures of both species that reflected up to a 2,000-fold difference in DNA concentration. In addition, we developed a simple protocol to extract DNA from sonicated first-instar larvae, and used that DNA to test the assay. Because it uses real-time PCR, the assay saves time by not requiring a separate visualization step. This assay can reduce the time needed for vector control agencies to make species identifications, and thus inform decisions about surveillance and control.
Journal Article
Transmission of Heartland Virus (Bunyaviridae: Phlebovirus) by Experimentally Infected Amblyomma americanum (Acari: Ixodidae)
by
Delorey, Mark J.
,
Godsey, Marvin S.
,
Savage, Harry M.
in
adults
,
Amblyomma americanum
,
Bunyaviridae
2016
Heartland virus (HRTV; Bunyaviridae: Phlebovirus) is a recently described cause of human illness in the United States. After field studies conducted in 2012 implicated Amblyomma americanum (L.) as a vector of HRTV, we initiated experiments to assess the vector competence of A. americanum. Larval and nymphal ticks were immersed in high-titered suspensions of HRTV, and then tested for virus at various intervals postimmersion. In a later trial larval ticks were immersed in HRTV, followed by engorgement on a rabbit. A subset of postmolt nymphs was tested for HRTV to document transstadial transmission. Putatively infected nymphs were cofed with uninfected colony larvae to assess nonviremic transmission. In another trial, nymphs were fed on a rabbit and allowed to molt to the adult stage. Male and female ticks fed and mated upon a rabbit, and females were allowed to oviposit. Male and spent female ticks were tested for HRTV, and offspring of infected females were tested to assess vertical transmission. Infection rates of ≤50% were observed in immersed larvae and nymphs tested at intervals following immersion. Transstadial transmission from larvae to nymphs and then to adults was documented. HRTV was detected in a pool of nymphs molted from uninfected larvae cofed with infected nymphs. Vertical transmission of HRTV was observed in progeny of infected females. Infected females took longer to oviposit and produced fewer offspring. Serologic conversions (without viremia) in rabbits fed upon by immersed larvae or transstadially infected ticks indicate horizontal transmission of HRTV.
Journal Article
Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States
2017
The mosquitoes Aedes (Stegomyia) aegypti (L.)(Diptera:Culicidae) and Ae. (Stegomyia) albopictus (Skuse) (Diptera:Culicidae) transmit dengue, chikungunya, and Zika viruses and represent a growing public health threat in parts of the United States where they are established.To complement existing mosquito presence records based on discontinuous, non-systematic surveillance efforts, we developed county-scale environmental suitability maps for both species using maximum entropy modeling to fit climatic variables to county presence records from 1960–2016 in the contiguous United States. The predictive models for Ae. aegypti and Ae. albopictus had an overall accuracy of 0.84 and 0.85, respectively. Cumulative growing degree days (GDDs) during the winter months, an indicator of overall warmth, was the most important predictive variable for both species and was positively associated with environmental suitability. The number (percentage) of counties classified as environmentally suitable, based on models with 90 or 99% sensitivity, ranged from 1,443 (46%) to 2,209 (71%) for Ae. aegypti and from 1,726 (55%) to 2,329 (75%) for Ae. albopictus. Increasing model sensitivity results in more counties classified as suitable, at least for summer survival, from which there are no mosquito records. We anticipate that Ae. aegypti and Ae. albopictus will be found more commonly in counties classified as suitable based on the lower 90% sensitivity threshold compared with the higher 99% threshold. Counties predicted suitable with 90% sensitivity should therefore be a top priority for expanded mosquito surveillance efforts while still keeping in mind that Ae. aegypti and Ae. albopictus may be introduced, via accidental transport of eggs or immatures, and potentially proliferate during the warmest part of the year anywhere within the geographic areas delineated by the 99% sensitivity model.
Journal Article