Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
4
result(s) for
"Savoca, Maria Pia"
Sort by:
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications
2018
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments’ quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Journal Article
Canonical and truncated transglutaminase-2 regulate mucin-1 expression and androgen independency in prostate cancer cell lines
2023
Androgen independency is associated with poor prostate cancer (PCa) survival. Here we report that silencing of transglutaminase-2 (TG2) expression by CRISPR-Cas9 is associated with upregulation of androgen receptor (AR) transcription in PCa cell lines. Knockout of TG2 reversed the migratory potential and anchorage independency of PC3 and DU145 cells and revealed a reduced level of mucin-1 (MUC1) RNA transcript through unbiased multi-omics profiling, which was restored by selective add-back of the truncated TG2 isoform (TGM2_v2). Silencing of AR resulted into increased MUC1 in TG2KO PC3 cells showing that TG2 affects transcriptional regulation of MUC1 via repressing AR expression. Treatment of PC3 WT cell line with TG2 inhibitor ZDON led to a significant increase in AR expression and decrease in MUC1. ZDON also blocked the formation of MUC1-multimers labelled with TG amine-donor substrates in reducing conditions, revealing for the first time a role for TG2, which we show to be externalised via extracellular vesicles, in MUC1 stabilisation via calcium-dependent transamidation. A specific antibody towards TGM2_v2 revealed its restricted nuclear location compared to the canonical long form of TG2 (TGM2_v1), which is predominantly cytosolic, suggesting that this form contributes to the previously suggested TG2-mediated NF-κB activation and AR transcriptional repression. As TGM2_v2 transcription was increased in biopsies of early-stage prostate adenocarcinoma (PRAD) patients compared to subjects presenting inflammatory prostatitis, and total TG2 protein expression significantly increased in PRAD versus normal tissue, the role of TG2 and its truncated form as a prostate malignancy marker is suggested. In conclusion, this investigation has provided the first unbiased discovery of a novel pathway mediated by TG2 via MUC1, which is shown to contribute to androgen insensitivity and malignancy of PCa cells and be upregulated in PCa biopsies, with potential relevance to cancer immune evasion.
Journal Article
Search for Novel Diagnostic Biomarkers of Prostate Inflammation-Related Disorders: Role of Transglutaminase Isoforms as Potential Candidates
by
Verderio, Elisabetta A. M.
,
Savoca, Maria Pia
,
Caccamo, Daniela
in
Amino acids
,
Apoptosis
,
B cells
2019
Investigations on prostate inflammation-related disorders, including acute and chronic prostatitis, chronic pelvic pain syndrome, benign prostate hyperplasia (BPH), and prostate cancer (PCa), are still ongoing to find new, accurate, and noninvasive biomarkers for a differential diagnosis of those pathological conditions sharing some common macroscopic features. Moreover, an ideal biomarker should be useful for risk assessment of prostate inflammation progression to more severe disorders, like BPH or PCa, as well as for monitoring of treatment response and prognosis establishment in carcinoma cases. Recent literature evidence highlighted that changes in the expression of transglutaminases, enzymes that catalyze transamidation reactions leading to posttranslational modifications of soluble proteins, occur in prostate inflammation-related disorders. This review focuses on the role specifically played by transglutaminases 4 (TG4) and 2 (TG2) and suggests that both isoenzymes hold a potential to be included in the list of candidates as novel diagnostic biomarkers for the above-cited prostate pathological conditions.
Journal Article
Astrocytic extracellular vesicles modulate neuronal calcium homeostasis via transglutaminase-2
by
Boocock, David J
,
Mazzanti, Michele
,
Elisabetta Am Verderio
in
Astrocytes
,
Brain slice preparation
,
Calcium (extracellular)
2021
We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarisation and activation of inward currents, due to the opening of L-type-VOCCs and to Na+/Ca2+-exchanger (NCX) operation in the reverse mode, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation. Competing Interest Statement The authors have declared no competing interest. Footnotes * Extended View figures/tables (Fig. EV1, EV2, EV3; Table EV1) and Appendix (extended methods and Supplementary Table S1) have been added