Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
809 result(s) for "Sayer, J. A"
Sort by:
Embryonic and foetal expression patterns of the ciliopathy gene CEP164
Nephronophthisis-related ciliopathies (NPHP-RC) are a group of inherited genetic disorders that share a defect in the formation, maintenance or functioning of the primary cilium complex, causing progressive cystic kidney disease and other clinical manifestations. Mutations in centrosomal protein 164 kDa (CEP164), also known as NPHP15, have been identified as a cause of NPHP-RC. Here we have utilised the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR) to perform immunohistochemistry studies on human embryonic and foetal tissues to determine the expression patterns of CEP164 during development. Notably expression is widespread, yet defined, in multiple organs including the kidney, retina and cerebellum. Murine studies demonstrated an almost identical Cep164 expression pattern. Taken together, these data support a conserved role for CEP164 throughout the development of numerous organs, which, we suggest, accounts for the multi-system disease phenotype of CEP164-mediated NPHP-RC.
A mutant wfs1 zebrafish model of Wolfram syndrome manifesting visual dysfunction and developmental delay
Wolfram syndrome (WS) is an ultra-rare progressive neurodegenerative disorder defined by early-onset diabetes mellitus and optic atrophy. The majority of patients harbour recessive mutations in the WFS1 gene, which encodes for Wolframin, a transmembrane endoplasmic reticulum protein. There is limited availability of human ocular and brain tissues, and there are few animal models for WS that replicate the neuropathology and clinical phenotype seen in this disorder. We, therefore, characterised two wfs1 zebrafish knockout models harbouring nonsense wfs1a and wfs1b mutations. Both homozygous mutant wfs1a −/− and wfs1 b −/− embryos showed significant morphological abnormalities in early development. The wfs1 b −/− zebrafish exhibited a more pronounced neurodegenerative phenotype with delayed neuronal development, progressive loss of retinal ganglion cells and clear evidence of visual dysfunction on functional testing. At 12 months of age, wfs1b −/− zebrafish had a significantly lower RGC density per 100 μm 2 (mean ± standard deviation; 19 ± 1.7) compared with wild-type (WT) zebrafish (25 ± 2.3, p < 0.001). The optokinetic response for wfs1b −/− zebrafish was significantly reduced at 8 and 16 rpm testing speeds at both 4 and 12 months of age compared with WT zebrafish. An upregulation of the unfolded protein response was observed in mutant zebrafish indicative of increased endoplasmic reticulum stress. Mutant wfs1 b −/− zebrafish exhibit some of the key features seen in patients with WS, providing a versatile and cost-effective in vivo model that can be used to further investigate the underlying pathophysiology of WS and potential therapeutic interventions.
Calcium oxalate crystal deposition in the kidney: identification, causes and consequences
Calcium oxalate (CaOx) crystal deposition within the tubules is often a perplexing finding on renal biopsy of both native and transplanted kidneys. Understanding the underlying causes may help diagnosis and future management. The most frequent cause of CaOx crystal deposition within the kidney is hyperoxaluria. When this is seen in native kidney biopsy, primary hyperoxaluria must be considered and investigated further with biochemical and genetic tests. Secondary hyperoxaluria, for example due to enteric hyperoxaluria following bariatric surgery, ingested ethylene glycol or vitamin C overdose may also cause CaOx deposition in native kidneys. CaOx deposition is a frequent finding in renal transplant biopsy, often as a consequence of acute tubular necrosis and is associated with poorer long-term graft outcomes. CaOx crystal deposition in the renal transplant may also be secondary to any of the causes associated with this phenotype in the native kidney. The pathophysiology underlying CaOx deposition is complex but this histological phenotype may indicate serious underlying pathology and should always warrant further investigation.
Disruption of clc-5 leads to a redistribution of annexin A2 and promotes calcium crystal agglomeration in collecting duct epithelial cells
Mutations in CLCN5, which encodes the voltage-dependent Cl(-)/H(+)antiporter, CLC-5, cause Dent's disease. This disorder is characterized by low molecular-weight proteinuria, hypercalciuria, nephrocalcinosis and nephrolithiasis. Using a collecting duct cell model (mIMCD-3) in which endogenous clc-5 is disrupted by antisense clc-5 or overexpression of truncated clc-5, we demonstrate altered expression of the crystal adhesion molecule, annexin A2. Endogenously expressed annexin A2 is intracellular with limited plasma membrane localization. Following clc-5 disruption, there is both a marked increase in plasma membrane annexin A2 and an increase in cell surface crystal retention and agglomeration, which may be attenuated using pretreatment with anti-annexin A2 antibodies or wheat germ agglutinin lectin but not by concanavalin A. We hypothesize that in Dent's disease, endocytic failure leads to an accumulation at the plasma membrane of crystal-binding molecules that include annexin A2 leading to retention of calcium crystals and ultimately nephrocalcinosis and nephrolithiasis.
Expression patterns of ciliopathy genes ARL3 and CEP120 reveal roles in multisystem development
Background Joubert syndrome and related disorders (JSRD) and Jeune syndrome are multisystem ciliopathy disorders with overlapping phenotypes. There are a growing number of genetic causes for these rare syndromes, including the recently described genes ARL3 and CEP120 . Methods We sought to explore the developmental expression patterns of ARL3 and CEP120 in humans to gain additional understanding of these genetic conditions. We used an RNA in situ detection technique called RNAscope to characterise ARL3 and CEP120 expression patterns in human embryos and foetuses in collaboration with the MRC-Wellcome Trust Human Developmental Biology Resource. Results Both ARL3 and CEP120 are expressed in early human brain development, including the cerebellum and in the developing retina and kidney, consistent with the clinical phenotypes seen with pathogenic variants in these genes. Conclusions This study provides insights into the potential pathogenesis of JSRD by uncovering the spatial expression of two JSRD-causative genes during normal human development.
Mutational analysis of the RPGRIP1L gene in patients with Joubert syndrome and nephronophthisis
Joubert syndrome (JS) is an autosomal recessive disorder, consisting of mental retardation, cerebellar vermis aplasia, an irregular breathing pattern, and retinal degeneration. Nephronophthisis (NPHP) is found in 17–27% of these patients, which was designated JS type B. Mutations in four separate genes (AHI1, NPHP1, CEP290/NPHP6, and MKS3) are linked to JS. However, missense mutations in a new ciliary gene (RPGRIP1L) were found in type B patients. We analyzed a cohort of 56 patients with JS type B who were negative for mutations in three (AHI1, NPHP1, and CEP290/NPHP6) of the four genes previously linked to the syndrome. The 26 exons encoding RPGRIP1L were analyzed by means of PCR amplification, CEL I endonuclease digestion, and subsequent sequencing. Using this approach, four different mutations in the RPGRIP1L gene in five different families were identified and three were found to be novel mutations. Additionally, we verified that missense mutations are responsible for JS type B and cluster in exon 15 of the RPGRIP1L gene. Our studies confirm that a T615P mutation represents the most common mutation in the RPGRIP1L gene causing disease in about 8–10% of JS type B patients negative for NPHP1, NPHP6, or AHI1 mutations.
Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination
Microorganisms play important roles in the environmental fate of toxic metals with a multiplicity of physico-chemical and biological mechanisms effecting transformations between soluble and insoluble phases. Such mechanisms are important components of natural biogeochemical cycles for metals and metalloids with some processes being of potential application to the treatment of contaminated materials. This paper will concentrate on three selected aspects which illustrate the key importance of microorganisms in effecting changes in metal(loid) solubility, namely toxic metal sulfide precipitation by sulfate-reducing bacteria, heterotrophic leaching by fungi, and microbial transformations of metalloids, which includes reduction and methylation. The basic microbiology of these processes is described as well as their environmental significance and use in bioremediation.
Global Financial Crisis Impacts Forest Conservation in Cameroon
The forests of SE Cameroon lie within the Sangha tri-national landscape (TNS), a priority area for biodiversity conservation under the Congo Basin Forest Partnership. A monitoring program showed minimal changes in conservation and local livelihoods indicators from 2006 to 2008. Following the global financial crisis in late 2008 global demand for timber decreased and this led to suspension of logging activities and lay-offs of staff by logging companies; both biodiversity and livelihood indicators deteriorated. The unemployed workers lost their incomes, experienced declining living standards and reverted to poaching and slash and burn agriculture. Pygmies were no longer able to obtain employment in Bantu agricultural plots, sell forest products to logging company employees or sell bushmeat to passing logging trucks. These global economic forces had greater impact on livelihoods and the environment than local interventions by conservation organizations. Livelihood indicators improved in 2010 and 2011 when the economy picked-up but those for environmental values did not recover as rapidly.