Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
65
result(s) for
"Scanlon, David O"
Sort by:
The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond
2022
The optoelectronic performance of wide-bandgap semiconductors often cannot compete with that of their defect-tolerant small-bandgap counterpart. Here, the authors outline three main challenges to overcome for mitigating the impact of defects in wide-bandgap semiconductors.
Journal Article
Identifying the ground state structures of point defects in solids
2023
Point defects are a universal feature of crystals. Their identification is addressed by combining experimental measurements with theoretical models. The standard modelling approach is, however, prone to missing the ground state atomic configurations associated with energy-lowering reconstructions from the idealised crystallographic environment. Missed ground states compromise the accuracy of calculated properties. To address this issue, we report an approach to navigate the defect configurational landscape using targeted bond distortions and rattling. Application of our workflow to eight materials (CdTe, GaAs, Sb2S3, Sb2Se3, CeO2, In2O3, ZnO, anatase-TiO2) reveals symmetry breaking in each host crystal that is not found via conventional local minimisation techniques. The point defect distortions are classified by the associated physico-chemical factors. We demonstrate the impact of these defect distortions on derived properties, including formation energies, concentrations and charge transition levels. Our work presents a step forward for quantitative modelling of imperfect solids.
Journal Article
Emergent and robust ferromagnetic-insulating state in highly strained ferroelastic LaCoO3 thin films
2023
Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO
3
with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO
3
films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO
6
octahedral rotations throughout LaCoO
3
films. Supported by density functional theory calculations, we find that the strong modification of Co 3
d
-O 2
p
hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO
3
films while suggesting potential applications toward low-power spintronic devices.
Transition metal oxides are a promising class of materials to engineer multiferroic properties for next-generation spintronic devices. Here, the authors demonstrate an emergent and robust ferromagnetic-insulating state in ferroelastic LaCoO
3
epitaxial films by strain-defect-microstructure manipulated electronic and magnetic states.
Journal Article
Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge-carrier recombination
2022
I-V-VI
2
ternary chalcogenides are gaining attention as earth-abundant, nontoxic, and air-stable absorbers for photovoltaic applications. However, the semiconductors explored thus far have slowly-rising absorption onsets, and their charge-carrier transport is not well understood yet. Herein, we investigate cation-disordered NaBiS
2
nanocrystals, which have a steep absorption onset, with absorption coefficients reaching >10
5
cm
−1
just above its pseudo-direct bandgap of 1.4 eV. Surprisingly, we also observe an ultrafast (picosecond-time scale) photoconductivity decay and long-lived charge-carrier population persisting for over one microsecond in NaBiS
2
nanocrystals. These unusual features arise because of the localised, non-bonding S
p
character of the upper valence band, which leads to a high density of electronic states at the band edges, ultrafast localisation of spatially-separated electrons and holes, as well as the slow decay of trapped holes. This work reveals the critical role of cation disorder in these systems on both absorption characteristics and charge-carrier kinetics.
Ternary chalcogenides are gaining interest as nontoxic, stable solar absorbers. Here, the authors investigate NaBiS
2
, finding cation disorder to be a critical parameter that enables its high absorption strength and unusual charge-carrier kinetics.
Journal Article
High-throughput calculations of charged point defect properties with semi-local density functional theory—performance benchmarks for materials screening applications
2023
Calculations of point defect energetics with Density Functional Theory (DFT) can provide valuable insight into several optoelectronic, thermodynamic, and kinetic properties. These calculations commonly use methods ranging from semi-local functionals with a-posteriori corrections to more computationally intensive hybrid functional approaches. For applications of DFT-based high-throughput computation for data-driven materials discovery, point defect properties are of interest, yet are currently excluded from available materials databases. This work presents a benchmark analysis of automated, semi-local point defect calculations with a-posteriori corrections, compared to 245 “gold standard” hybrid calculations previously published. We consider three different a-posteriori correction sets implemented in an automated workflow, and evaluate the qualitative and quantitative differences among four different categories of defect information: thermodynamic transition levels, formation energies, Fermi levels, and dopability limits. We highlight qualitative information that can be extracted from high-throughput calculations based on semi-local DFT methods, while also demonstrating the limits of quantitative accuracy.
Journal Article
Exploring battery cathode materials in the Li-Ni-O phase diagrams using structure prediction
by
Cen, Jiayi
,
Zhu, Bonan
,
Scanlon, David O
in
ab initio random structure searching
,
Cathodes
,
Chemical reactions
2023
The Li-Ni-O phase diagram contains several electrochemically active ternary phases. Many compositions and structures in this phase space can easily be altered by (electro-)chemical processes, yielding many more (meta-)stable structures with interesting properties. In this study, we use ab initio random structure searching (AIRSS) to accelerate materials discovery of the Li-Ni-O phase space. We demonstrate that AIRSS can efficiently explore structures (e.g. LiNiO 2 ) displaying dynamic Jahn-Teller effects. A thermodynamically stable Li 2 Ni 2 O 3 phase which reduces the thermodynamic stability window of LiNiO 2 was discovered. AIRSS also encountered many dynamically stable structures close to the convex hull. Therefore, we confirm the presence of metastable Li-Ni-O phases by revealing their structures and properties. This work will allow Li-Ni-O phases to be more easily identified in future experiments and help to combat the challenges in synthesizing Li-Ni-O phases.
Journal Article
2023 roadmap for potassium-ion batteries
by
Lu, Bingan
,
Chen, Jingwei
,
Cora, Furio
in
Alternative technology
,
Chemical Sciences
,
electrolytes
2023
The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape.
Journal Article
Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells
2022
Strong optical absorption by a semiconductor is a highly desirable property for many optoelectronic and photovoltaic applications. The optimal thickness of a semiconductor absorber is primarily determined by its absorption coefficient. To date, this parameter has been considered as a fundamental material property, and efforts to realize thinner photovoltaics have relied on light-trapping structures that add complexity and cost. Here we demonstrate that engineering cation disorder in a ternary chalcogenide semiconductor leads to considerable absorption increase due to enhancement of the optical transition matrix elements. We show that cation-disorder-engineered AgBiS2 colloidal nanocrystals offer an absorption coefficient that is higher than other photovoltaic materials, enabling highly efficient extremely thin absorber photovoltaic devices. We report solution-processed, environmentally friendly, 30-nm-thick solar cells with short-circuit current density of 27 mA cm−2, a power conversion efficiency of 9.17% (8.85% certified) and high stability under ambient conditions.AgBiS2 nanocrystals with enhanced optical absorption yield efficient ultrathin solar cells.
Journal Article
Modulation of the Bi3+ 6s2 Lone Pair State in Perovskites for High‐Mobility p‐Type Oxide Semiconductors
by
Shi, Jueli
,
Li, Weiwei
,
Qin, Changdong
in
DFT calculations
,
electronic structures
,
Optical properties
2022
Oxide semiconductors are key materials in many technologies from flat‐panel displays,solar cells to transparent electronics. However, many potential applications are hindered by the lack of high mobility p‐type oxide semiconductors due to the localized O‐2p derived valence band (VB) structure. In this work, the VB structure modulation is reported for perovskite Ba2BiMO6 (M = Bi, Nb, Ta) via the Bi 6s2 lone pair state to achieve p‐type oxide semiconductors with high hole mobility up to 21 cm2 V−1 s−1, and optical bandgaps widely varying from 1.5 to 3.2 eV. Pulsed laser deposition is used to grow high quality epitaxial thin films. Synergistic combination of hard x‐ray photoemission, x‐ray absorption spectroscopies, and density functional theory calculations are used to gain insight into the electronic structure of Ba2BiMO6. The high mobility is attributed to the highly dispersive VB edges contributed from the strong coupling of Bi 6s with O 2p at the top of VB that lead to low hole effective masses (0.4–0.7 me). Large variation in bandgaps results from the change in the energy positions of unoccupied Bi 6s orbital or Nb/Ta d orbitals that form the bottom of conduction band. P–N junction diode constructed with p‐type Ba2BiTaO6 and n‐type Nb doped SrTiO3 exhibits high rectifying ratio of 1.3 × 104 at ±3 V, showing great potential in fabricating high‐quality devices. This work provides deep insight into the electronic structure of Bi3+ based perovskites and guides the development of new p‐type oxide semiconductors. The development of high mobility p‐type oxide is crucial for many technologies including flat‐panel displays, solar cells, and transparent electronics. In this work, the development is reported of novel p‐type oxide semiconductors Ba2BiMO6 (M = Bi, Nb, Ta) with high hole mobility up to 21 cm2 V−1 s−1, and variable bandgaps from 1.5 to 3.2 eV by modulating their VB structure via the Bi 6s2 lone pair states.
Journal Article