Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13
result(s) for
"Scarpelli, Mauro"
Sort by:
The role of mitochondria in neurodegenerative diseases
by
Vielmi, Valentina
,
Tonin, Paola
,
Tomelleri, Giuliano
in
Alzheimer's disease
,
Amyotrophic lateral sclerosis
,
Animals
2011
Mitochondria are implicated in several metabolic pathways including cell respiratory processes, apoptosis, and free radical production. Mitochondrial abnormalities have been documented in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s diseases, and amyotrophic lateral sclerosis. Several studies have demonstrated that mitochondrial impairment plays an important role in the pathogenesis of this group of disorders. In this review, we discuss the role of mitochondria in the main neurodegenerative diseases and review the updated knowledge in this field.
Journal Article
The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender?
2014
The m.3243A>G “MELAS” (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) mutation is one of the most common point mutations of the mitochondrial DNA, but its phenotypic variability is incompletely understood. The aim of this study was to revise the phenotypic spectrum associated with the mitochondrial m.3243A>G mutation in 126 Italian carriers of the mutation, by a retrospective, database-based study (“Nation-wide Italian Collaborative Network of Mitochondrial Diseases”). Our results confirmed the high clinical heterogeneity of the m.3243A>G mutation. Hearing loss and diabetes were the most frequent clinical features, followed by stroke-like episodes. “MIDD” (maternally-inherited diabetes and deafness) and “PEO” (progressive external ophthalmoplegia) are nosographic terms without any real prognostic value, because these patients may be even more prone to the development of multisystem complications such as stroke-like episodes and heart involvement. The “MELAS” acronym is convincing and useful to denote patients with histological, biochemical and/or molecular evidence of mitochondrial disease who experience stroke-like episodes. Of note, we observed for the first time that male gender could represent a risk factor for the development of stroke-like episodes in Italian m.3243A>G carriers. Gender effect is not a new concept in mitochondrial medicine, but it has never been observed in MELAS. A better elucidation of the complex network linking mitochondrial dysfunction, apoptosis, estrogen effects and stroke-like episodes may hold therapeutic promises.
Journal Article
Liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical long-term follow-up and pathogenic implications
2020
We report the longest follow-up of clinical and biochemical features of two previously reported adult mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients treated with liver transplantation (LT), adding information on a third, recently transplanted, patient. All three patients overcame the early post-operative period and tolerated immunosuppressive therapy. Plasma nucleoside levels dramatically decreased, with evidence of clinical improvement of ambulation and neuropathy. Conversely, other features of MNGIE, as gastrointestinal dysmotility, low weight, ophthalmoparesis, and leukoencephalopathy were essentially unchanged. A similar picture characterized two patients treated with allogenic hematopoietic stem cell transplantation (AHSCT). In conclusion, LT promptly and stably normalizes nucleoside imbalance in MNGIE, stabilizing or improving some clinical parameters with marginal periprocedural mortality rate as compared to AHSCT. Nevertheless, restoring thymidine phosphorylase (TP) activity, achieved by both LT and AHSCT, does not allow a full clinical recovery, probably due to consolidated cellular damage and/or incomplete enzymatic tissue replacement.
Journal Article
Redefining phenotypes associated with mitochondrial DNA single deletion
by
Servidei, Serenella
,
Toscano, Antonio
,
Vercelli, Liliana
in
Acyl-CoA Dehydrogenase, Long-Chain - deficiency
,
Acyl-CoA Dehydrogenase, Long-Chain - genetics
,
Adult
2015
Progressive external ophthalmoplegia (PEO), Kearns–Sayre syndrome (KSS) and Pearson syndrome are the three sporadic clinical syndromes classically associated with single large-scale deletions of mitochondrial DNA (mtDNA). PEO plus is a term frequently utilized in the clinical setting to identify patients with PEO and some degree of multisystem involvement, but a precise definition is not available. The purpose of the present study is to better define the clinical phenotypes associated with a single mtDNA deletion, by a retrospective study on a large cohort of 228 patients from the database of the “Nation-wide Italian Collaborative Network of Mitochondrial Diseases”. In our database, single deletions account for about a third of all patients with mtDNA-related disease, more than previously recognized. We elaborated new criteria for the definition of PEO and “KSS spectrum” (a category of which classic KSS represents the most severe extreme). The criteria for “KSS spectrum” include the resulting multisystem clinical features associated with the KSS features, and which therefore can predict their presence or subsequent development. With the new criteria, we were able to classify nearly all our single-deletion patients: 64.5 % PEO, 31.6 % KSS spectrum (including classic KSS 6.6 %) and 2.6 % Pearson syndrome. The deletion length was greater in KSS spectrum than in PEO, whereas heteroplasmy was inversely related with age at onset. We believe that the new phenotype definitions implemented here may contribute to a more homogeneous patient categorization, which will be useful in future cohort studies of natural history and clinical trials.
Journal Article
Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients
by
Iafrate, Massimo
,
Querin, Giorgia
,
Bertolin, Cinzia
in
Adult
,
Aged
,
Androgen-Insensitivity Syndrome - complications
2016
ObjectiveTo carry out a deep characterisation of the main androgen-responsive tissues involved in spinal and bulbar muscular atrophy (SBMA).Methods73 consecutive Italian patients underwent a full clinical protocol including biochemical and hormonal analyses, genitourinary examination, bone metabolism and densitometry, cardiological evaluation and muscle pathology.ResultsCreatine kinase levels were slightly to markedly elevated in almost all cases (68 of the 73; 94%). 30 (41%) patients had fasting glucose above the reference limit, and many patients had total cholesterol (40; 54.7%), low-density lipoproteins cholesterol (29; 39.7%) and triglyceride (35; 48%) levels above the recommended values. Although testosterone, luteinising hormone and follicle-stimulating hormone values were generally normal, in one-third of cases we calculated an increased Androgen Sensitivity Index reflecting the presence of androgen resistance in these patients. According to the International Prostate Symptom Score (IPSS), 7/70 (10%) patients reported severe lower urinal tract symptoms (IPSS score >19), and 21/73 (30%) patients were moderately symptomatic (IPSS score from 8 to 19). In addition, 3 patients were carriers of an indwelling bladder catheter. Videourodynamic evaluation indicated that 4 of the 7 patients reporting severe urinary symptoms had an overt prostate-unrelated bladder outlet obstruction. Dual-energy X-ray absorptiometry scan data were consistent with low bone mass in 25/61 (41%) patients. Low bone mass was more frequent at the femoral than at the lumbar level. Skeletal muscle biopsy was carried out in 20 patients and myogenic changes in addition to the neurogenic atrophy were mostly observed.ConclusionsOur study provides evidence of a wide non-neural clinical phenotype in SBMA, suggesting the need for comprehensive multidisciplinary protocols for these patients.
Journal Article
Safety and Efficacy of Erythrocyte Encapsulated Thymidine Phosphorylase in Mitochondrial Neurogastrointestinal Encephalomyopathy
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare autosomal recessive disorder of nucleoside metabolism that is caused by mutations in the nuclear thymidine phosphorylase gene (TYMP) gene, encoding for the enzyme thymidine phosphorylase. There are currently no approved treatments for MNGIE. The aim of this study was to investigate the safety, tolerability, and efficacy of an enzyme replacement therapy for the treatment of MNGIE. In this single centre study, three adult patients with MNGIE received intravenous escalating doses of erythrocyte encapsulated thymidine phosphorylase (EE-TP; dose range: 4 to 108 U/kg/4 weeks). EE-TP was well tolerated and reductions in the disease-associated plasma metabolites, thymidine, and deoxyuridine were observed in all three patients. Clinical improvements, including weight gain and improved disease scores, were observed in two patients, suggesting that EE-TP is able to reverse some aspects of the disease pathology. Transient, non-serious adverse events were observed in two of the three patients; these did not lead to therapy discontinuation and they were managed with pre-medication prior to infusion of EE-TP. To conclude, enzyme replacement therapy with EE-TP demonstrated biochemical and clinical therapeutic efficacy with an acceptable clinical safety profile.
Journal Article
Course and management of allogeneic stem cell transplantation in patients with mitochondrial neurogastrointestinal encephalomyopathy
by
Rovelli, Attilio
,
Todeschini, Alice
,
Santus, Francesca
in
Abdomen
,
Adult
,
Biological and medical sciences
2012
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). Allogeneic hematopoietic stem cell transplantation (HSCT) has been proposed as a treatment for patients with MNGIE and a standardized approach to HSCT in this condition has recently been developed. We report on the transplant course, management and short-term follow-up in two MNGIE patients who underwent HSCT. The source of stem cells was bone marrow taken from an HLA 9/10 allele-matched unrelated donor in the first patient and from an HLA 10/10 allele-matched sibling donor in the second. Both patients achieved full donor chimerism, and we observed restoration of buffy coat TP activity and lowered urine nucleoside concentrations in both of them. The post-transplant clinical follow-up showed improvement in gastrointestinal dysmotility, abdominal cramps and diarrhea. Neurological assessment remained unchanged. However, the first patient died 15 months after HSCT due to gastrointestinal obstruction and shock; the second patient died 8 months after the procedure due to respiratory distress following septic shock. Although HSCT corrects biochemical abnormalities and improves gastrointestinal symptoms, the procedure can be risky in subjects already in poor medical condition as are many MNGIE patients. Since transplant-related morbidity and mortality increases with progression of the disease and number of comorbidities, MNGIE patients should be submitted to HSCT when they are still relatively healthy, in order to minimize the complications of the procedure. Anyway, there is still incomplete knowledge on the natural history of the disease in many affected patients and it is not yet clear when the best time to do a transplant is. Further clues to the therapeutic potential of HSCT could result from a prolonged observation in a greater number of non-transplanted and transplanted patients, which would allow us to answer the questions of if, how and when MNGIE patients require HSCT treatment.
Journal Article
Mitochondrial diseases: advances and issues
by
Todeschini, Alice
,
Filosto, Massimiliano
,
Padovani, Alessandro
in
Alzheimer's disease
,
Biosynthesis
,
Care and treatment
2017
Mitochondrial diseases (MDs) are a clinically heterogeneous group of disorders caused by a dysfunction of the mitochondrial respiratory chain. They can be related to mutation of genes encoded using either nuclear DNA or mitochondrial DNA. The advent of next generation sequencing and whole exome sequencing in studying the molecular bases of MDs will bring about a revolution in the field of mitochondrial medicine, also opening the possibility of better defining pathogenic mechanisms and developing novel therapeutic approaches for these devastating disorders. The canonical rules of mitochondrial medicine remain milestones, but novel issues have been raised following the use of advanced diagnostic technologies. Rigorous validation of the novel mutations detected using deep sequencing in patients with suspected MD, and a clear definition of the natural history, outcome measures, and biomarkers that could be usefully adopted in clinical trials, are mandatory goals for the scientific community. Today, therapy is often inadequate and mostly palliative. However, important advances have been made in treating some clinical entities, eg, mitochondrial neuro-gastrointestinal encephalomyopathy, for which approaches using allogeneic hematopoietic stem cell transplantation, orthotopic liver transplantation, and carrier erythrocyte entrapped thymidine phosphorylase enzyme therapy have recently been developed. Promising new treatment methods are being identified so that researchers, clinicians, and patients can join forces to change the history of these untreatable disorders.
Journal Article
Erythrocyte Encapsulated Thymidine Phosphorylase for the Treatment of Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy: Study Protocol for a Multi-Centre, Multiple Dose, Open Label Trial
2019
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder which primarily affects the gastrointestinal and nervous systems. This disease is caused by mutations in the nuclear TYMP gene, which encodes for thymidine phosphorylase, an enzyme required for the normal metabolism of deoxynucleosides, thymidine, and deoxyuridine. The subsequent elevated systemic concentrations of deoxynucleosides lead to increased intracellular concentrations of their corresponding triphosphates, and ultimately mitochondrial failure due to progressive accumulation of mitochondrial DNA (mtDNA) defects and mtDNA depletion. Currently, there are no treatments for MNGIE where effectiveness has been evidenced in clinical trials. This Phase 2, multi-centre, multiple dose, open label trial without a control will investigate the application of erythrocyte-encapsulated thymidine phosphorylase (EE-TP) as an enzyme replacement therapy for MNGIE. Three EE-TP dose levels are planned with patients receiving the dose level that achieves metabolic correction. The study duration is 31 months, comprising 28 days of screening, 90 days of run-in, 24 months of treatment and 90 days of post-dose follow-up. The primary objectives are to determine the safety, tolerability, pharmacodynamics, and efficacy of multiple doses of EE-TP. The secondary objectives are to assess EE-TP immunogenicity after multiple dose administrations and changes in clinical assessments, and the pharmacodynamics effect of EE-TP on clinical assessments.
Journal Article