Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
545
result(s) for
"Schäffner, K"
Sort by:
Results from 730 kg days of the CRESST-II Dark Matter search
by
Isaila, C.
,
Scholl, S.
,
Sivers, M. v.
in
Astronomy
,
Astrophysics and Cosmology
,
Calcium tungstates
2012
The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO
4
crystals, completed 730 kg days of data taking in 2011. We present the data collected with eight detector modules, each with a two-channel readout; one for a phonon signal and the other for coincidently produced scintillation light. The former provides a precise measure of the energy deposited by an interaction, and the ratio of scintillation light to deposited energy can be used to discriminate different types of interacting particles and thus to distinguish possible signal events from the dominant backgrounds.
Sixty-seven events are found in the acceptance region where a WIMP signal in the form of low energy nuclear recoils would be expected. We estimate background contributions to this observation from four sources: (1) “leakage” from the
e
/
γ
-band (2) “leakage” from the
α
-particle band (3) neutrons and (4)
206
Pb recoils from
210
Po decay. Using a maximum likelihood analysis, we find, at a statistical significance of more than 4
σ
, that these sources alone are not sufficient to explain the data. The addition of a signal due to scattering of relatively light WIMPs could account for this discrepancy, and we determine the associated WIMP parameters.
Journal Article
The COSINUS project: perspectives of a NaI scintillating calorimeter for dark matter search
2016
The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop a cryogenic scintillating calorimeter using an undoped NaI-crystal as target for direct dark matter search. Dark matter particles interacting with the detector material generate both a phonon signal and scintillation light. While the phonon signal provides a precise determination of the deposited energy, the simultaneously measured scintillation light allows for particle identification on an event-by-event basis, a powerful tool to study material-dependent interactions, and to suppress backgrounds. Using the same target material as the DAMA/LIBRA collaboration, the COSINUS technique may offer a unique possibility to investigate and contribute information to the presently controversial situation in the dark matter sector. We report on the dedicated design planned for the NaI proof-of-principle detector and the objectives of using this detection technique in the light of direct dark matter detection.
Journal Article
Results on light dark matter particles with a low-threshold CRESST-II detector
2016
The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO
4
crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub- GeV/
c
2
region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles.
Journal Article
The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects
2020
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay (
0
ν
β
β
) of
100
Mo
. In this article, we detail the CUPID-Mo detector concept, assembly and installation in the Modane underground laboratory, providing results from the first datasets. The CUPID-Mo detector consists of an array of 20
100
Mo
-enriched 0.2 kg
Li
2
MoO
4
crystals operated as scintillating bolometers at
∼
20
mK
. The
Li
2
MoO
4
crystals are complemented by 20 thin Ge optical bolometers to reject
α
events by the simultaneous detection of heat and scintillation light. We observe a good detector uniformity and an excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Light collection ensures the rejection of
α
particles at a level much higher than 99.9% – with equally high acceptance for
γ
/
β
events – in the region of interest for
100
Mo
0
ν
β
β
. We present limits on the crystals’ radiopurity:
≤
3
μ
Bq/kg
of
226
Ra
and
≤
2
μ
Bq/kg
of
232
Th
. We discuss the science reach of CUPID-Mo, which can set the most stringent half-life limit on the
100
Mo
0
ν
β
β
decay in half-a-year’s livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology developed by the LUMINEU project and subsequently selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale bolometric
0
ν
β
β
experiment.
Journal Article
Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground
2017
Models for light dark matter particles with masses below 1 GeV/c [Formula omitted] are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the [Formula omitted]-cleus experiment has achieved an energy threshold of [Formula omitted] eV. This is one order of magnitude lower than for previous devices and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 and 500 MeV/c [Formula omitted].
Journal Article
Background model of the CUPID-0 experiment
2019
CUPID-0 is the first large mass array of enriched Zn\\[^{82}\\]Se scintillating low temperature calorimeters, operated at LNGS since 2017. During its first scientific runs, CUPID-0 collected an exposure of 9.95 kg year. Thanks to the excellent rejection of \\[\\alpha \\] particles, we attained the lowest background ever measured with thermal detectors in the energy region where we search for the signature of \\[^{82}\\hbox {Se}\\] neutrinoless double beta decay. In this work we develop a model to reconstruct the CUPID-0 background over the whole energy range of experimental data. We identify the background sources exploiting their distinctive signatures and we assess their extremely low contribution [down to \\[\\sim 10^{-4}\\] counts/(keV kg year)] in the region of interest for \\[^{82}\\hbox {Se}\\] neutrinoless double beta decay search. This result represents a crucial step towards the comprehension of the background in experiments based on scintillating calorimeters and in next generation projects such as CUPID.
Journal Article
Results on low mass WIMPs using an upgraded CRESST-II detector
2014
The CRESST-II cryogenic dark matter search aims for the detection of WIMPs via elastic scattering off nuclei in CaWO
4
crystals. We present results from a low-threshold analysis of a single upgraded detector module. This module efficiently vetoes low energy backgrounds induced by
α
-decays on inner surfaces of the detector. With an exposure of 29.35 kg live days collected in 2013 we set a limit on spin-independent WIMP-nucleon scattering which probes a new region of parameter space for WIMP masses below 3 GeV/c
2
, previously not covered in direct detection searches. A possible excess over background discussed for the previous CRESST-II phase 1 (from 2009 to 2011) is not confirmed.
Journal Article
Simulation-based design study for the passive shielding of the COSINUS dark matter experiment
2022
The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The choice of using NaI crystals is motivated by the goal of probing the long-standing DAMA/LIBRA results using the same target material. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.
Journal Article
Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches
2018
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by \\[\\alpha \\] particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn\\[^{82}\\]Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the \\[\\alpha \\] background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters.
Journal Article
First results on low-mass dark matter from the CRESST-III experiment
2020
The CRESST experiment (Cryogenic Rare Even Search with Superconducting Thermometers), located at Laboratori Nazionali del Gran Sasso in Italy, searches for dark matter particles via their elastic scattering off nuclei in a target material. The CRESST target consists of scintillating CaWO4 crystals, which are operated as cryogenic calorimeters at millikelvin temperatures. Each interaction in the CaWO4 target crystal produces a phonon signal and a light signal that is measured by a second cryogenic calorimeter. Since the CRESST-II result in 2015, the experiment is leading the field of direct dark matter search for dark matter masses below 1.7 GeV/c2, extending the reach of direct searches to the sub-GeV/c2 mass region. For CRESST-III, whose Phase 1 started in July 2016, detectors have been optimized to reach the performance required to further probe the low-mass region with unprecedented sensitivity. In this contribution the achievements of the CRESST-III detectors will be discussed together with preliminary results and perspectives of Phase 1.
Journal Article