Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Schünemann, Volker"
Sort by:
Nanoscale Fe₂O₃-Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines
Production of anilines—key intermediates for the fine chemical, agrochemical, and pharmaceutical industries—relies on precious metal catalysts that selectively hydrogenate aryl nitro groups in the presence of other easily reducible functionalities. Herein, we report convenient and stable iron oxide (Fe₂O₃)-based catalysts as a more earth-abundant alternative for this transformation. Pyrolysis of iron-phenanthroline complexes on carbon furnishes a unique structure in which the active Fe₂O₃ particles are surrounded by a nitrogen-doped carbon layer. Highly selective hydrogénation of numerous structurally diverse nitroarenes (more than 80 examples) proceeded in good to excellent yield under industrially viable conditions.
Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin
Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich’s ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich’s ataxia therapies. The mechanism of iron-sulfur (Fe-S) cluster biosynthesis is not fully understood. Here, the authors develop a physiologically relevant in vitro model of Fe-S cluster assembly, allowing them to elucidate the sequence of Fe-S cluster synthesis along with the respective roles of ferredoxin-2 and frataxin.
Mechanism and structural dynamics of sulfur transfer during de novo 2Fe-2S cluster assembly on ISCU2
Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich’s ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381 NFS1 to Cys138 ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138 ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin’s molecular role in this fundamental process. The biogenesis of iron-sulfur proteins in eukaryotes is initiated by the mitochondrial core ISC complex. Here, the authors provide structural, biochemical and spectroscopic data to characterize sulfur transfer intermediates in the core ISC complex.
Low potential enzymatic hydride transfer via highly cooperative and inversely functionalized flavin cofactors
Hydride transfers play a crucial role in a multitude of biological redox reactions and are mediated by flavin, deazaflavin or nicotinamide adenine dinucleotide cofactors at standard redox potentials ranging from 0 to –340 mV. 2-Naphthoyl-CoA reductase, a key enzyme of oxygen-independent bacterial naphthalene degradation, uses a low-potential one-electron donor for the two-electron dearomatization of its substrate below the redox limit of known biological hydride transfer processes at E °’ = −493 mV. Here we demonstrate by X-ray structural analyses, QM/MM computational studies, and multiple spectroscopy/activity based titrations that highly cooperative electron transfer ( n  = 3) from a low-potential one-electron (FAD) to a two-electron (FMN) transferring flavin cofactor is the key to overcome the resonance stabilized aromatic system by hydride transfer in a highly hydrophobic pocket. The results evidence how the protein environment inversely functionalizes two flavins to switch from low-potential one-electron to hydride transfer at the thermodynamic limit of flavin redox chemistry. The reduction of 2-naphtoyl-CoA to 5,6 dihydro-2-naphtoyl-CoA by 2-naphtoyl-CoA reductase is below the negative redox limit usually encountered in biological hydride transfer. Here, via X-ray crystallography and spectroscopic analysis, the authors elucidated the mechanism behind this.
TudS desulfidases recycle 4-thiouridine-5’-monophosphate at a catalytic 4Fe-4S cluster
In all domains of life, transfer RNAs (tRNAs) contain post-transcriptionally sulfur-modified nucleosides such as 2- and 4-thiouridine. We have previously reported that a recombinant [4Fe-4S] cluster-containing bacterial desulfidase (TudS) from an uncultured bacterium catalyzes the desulfuration of 2- and 4-thiouracil via a [4Fe-5S] cluster intermediate. However, the in vivo function of TudS enzymes has remained unclear and direct evidence for substrate binding to the [4Fe-4S] cluster during catalysis was lacking. Here, we provide kinetic evidence that 4-thiouridine-5’-monophosphate rather than sulfurated tRNA, thiouracil, thiouridine or 4-thiouridine-5’-triphosphate is the preferred substrate of TudS. The occurrence of sulfur- and substrate-bound catalytic intermediates was uncovered from the observed switch of the S  = 3/2 spin state of the catalytic [4Fe-4S] cluster to a S  = 1/2 spin state upon substrate addition. We show that a putative gene product from Pseudomonas putida KT2440 acts as a TudS desulfidase in vivo and conclude that TudS-like enzymes are widespread desulfidases involved in recycling and detoxifying tRNA-derived 4-thiouridine monophosphate nucleosides for RNA synthesis. TudS-like enzymes are desulfidases involved in recycling and detoxifying tRNA-derived 4-thiouridine monophosphate nucleosides for RNA synthesis as unveiled by enzymatic, spectroscopic and docking studies of two bacterial TudS enzymes.
New Spin-Crossover Compounds Containing the Ni(mnt) Anion (mnt = Maleonitriledithiolate)
Two novel salts containing the anion [Ni(mnt)2]− (mnt = maleonitriledithiolate) have been synthesized. The counter-ions, [Fe(II)(L1 or L2)2], are cationic complexes where L1 and L2 are methylated derivatives of 2,6-bis(pyazolyl)pyridine or pyrazine, which are similar to ligands found in a series of spin-crossover (SCO) complexes. Both salts are characterized by variable temperature single crystal X-ray diffraction and bulk magnetization measurements. Compound 1, [Fe(II)(L1)2][Ni(mnt)2]2 displays an incomplete and gradual SCO up to 300 K, followed by a more rapid increase in the high-spin fraction between 300 and 350 K. Compound 2, [Fe(II)(L2)2][Ni(mnt)2]2.MeNO2, shows a gradual, but more complete SCO response centered at 250 K. For compound 2, the SCO is confirmed by variable temperature Mössbauer spectroscopy. In both cases, the anionic moieties are isolated from each other and so no electrical conductivity is observed.
Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation
A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-(E)-[2-hydroxyphenyl)imino]methylphenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in a tridentate fashion with the Fe(III) through their deprotonated phenolic oxygens and azomethine nitrogen atoms, resulting in a trans-FeO4N2 chromophore. Variable-temperature magnetic measurements were performed between 300 and 5 K under an applied field of 0.1 T and show that 1 is in the high spin state (S = 5/2) over the whole measured temperature range. This is confirmed by Mössbauer spectroscopy at 77 and 300 K.
Abrupt Spin Crossover Behavior in a Linear N1,N2-Triazole Bridged Trinuclear Fe(II) Complex
The synthesis, structures and magnetic properties of a new trinuclear spin crossover complex [FeII3(pyrtrz)6(TsO)6]·10H2O·2CH3OH (C2) and its analogue binuclear [FeII2(pyrtrz)5(SCN)4]·7H2O (C1), are reported here. These two compounds are synthesized based on the pyrrolyl functionalized Schiff base 1,2,4-triazole ligand 4-((1H-pyrrol-2-yl)methylene-amino)-4H-1,2,4-triazole (pyrtrz), which represent rare discrete multi-nuclear species, with µ2-N1,N2-triazole bridges linking the FeII centers. DC magnetic susceptibility measurements revealed an abrupt single-step spin crossover (SCO) behavior for compound 2 on the central FeII site and single-crystal X-ray diffraction (173 K) showed that this compound crystallizes in the monoclinic space group (P21/c), and multiple intramolecular interactions were found responsible for the abrupt transition. Compound 1 is a binuclear complex with thiocyanate as terminal ligands. This compound stays in high spin state over the whole temperature range and displays weak antiferromagnetic exchange coupling.
Multivariate Curve Resolution and Carbon Balance Constraint to Unravel FTIR Spectra from Fed-Batch Fermentation Samples
The current work investigates the capability of a tailored multivariate curve resolution–alternating least squares (MCR-ALS) algorithm to analyse glucose, phosphate, ammonium and acetate dynamics simultaneously in an E. coli BL21 fed-batch fermentation. The high-cell-density (HCDC) process is monitored by ex situ online attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy and several in situ online process sensors. This approach efficiently utilises automatically generated process data to reduce the time and cost consuming reference measurement effort for multivariate calibration. To determine metabolite concentrations with accuracies between ±0.19 and ±0.96·gL−l, the presented utilisation needs primarily—besides online sensor measurements—single FTIR measurements for each of the components of interest. The ambiguities in alternating least squares solutions for concentration estimation are reduced by the insertion of analytical process knowledge primarily in the form of elementary carbon mass balances. Thus, in this way, the established idea of mass balance constraints in MCR combines with the consistency check of measured data by carbon balances, as commonly applied in bioprocess engineering. The constraints are calculated based on online process data and theoretical assumptions. This increased calculation effort is able to replace, to a large extent, the need for manually conducted quantitative chemical analysis, leads to good estimations of concentration profiles and a better process understanding.