Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41
result(s) for
"Schaefer, Laura V."
Sort by:
Paired personal interaction reveals objective differences between pushing and holding isometric muscle action
2021
In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A “HIMA failure” occurred in 85% of trials ( p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA.
Journal Article
Disgusting odours affect the characteristics of the Adaptive Force in contrast to neutral and pleasant odours
by
Bittmann, Frank N.
,
Dech, Silas
,
Schaefer, Laura V.
in
631/378/2624
,
631/378/2629
,
631/378/2632
2021
The olfactomotor system is especially investigated by examining the sniffing in reaction to olfactory stimuli. The motor output of respiratory-independent muscles was seldomly considered regarding possible influences of smells. The Adaptive Force (AF) characterizes the capability of the neuromuscular system to adapt to external forces in a holding manner and was suggested to be more vulnerable to possible interfering stimuli due to the underlying complex control processes. The aim of this pilot study was to measure the effects of olfactory inputs on the AF of the hip and elbow flexors, respectively. The AF of 10 subjects was examined manually by experienced testers while smelling at sniffing sticks with neutral, pleasant or disgusting odours. The reaction force and the limb position were recorded by a handheld device. The results show, inter alia, a significantly lower maximal isometric AF and a significantly higher AF at the onset of oscillations by perceiving disgusting odours compared to pleasant or neutral odours (p < 0.001). The adaptive holding capacity seems to reflect the functionality of the neuromuscular control, which can be impaired by disgusting olfactory inputs. An undisturbed functioning neuromuscular system appears to be characterized by a proper length tension control and by an earlier onset of mutual oscillations during an external force increase. This highlights the strong connection of olfaction and motor control also regarding respiratory-independent muscles.
Journal Article
Parkinson patients without tremor show changed patterns of mechanical muscle oscillations during a specific bilateral motor task compared to controls
2020
The pathophysiology of Parkinson’s disease (PD) is still not understood. There are investigations which show a changed oscillatory behaviour of brain circuits or changes in variability of, e.g., gait parameters in PD. The aim of this study was to investigate whether or not the motor output differs between PD patients and healthy controls. Thereby, patients without tremor are investigated in the medication off state performing a special bilateral isometric motor task. The force and accelerations (ACC) were recorded as well as the Mechanomyography (MMG) of the biceps brachii, the brachioradialis and of the pectoralis major muscles using piezoelectric-sensors during the bilateral motor task at 60% of the maximal isometric contraction. The frequency, a specific power ratio, the amplitude variation and the slope of amplitudes were analysed. The results indicate that the oscillatory behaviour of motor output in PD patients without tremor deviates from controls: thereby, the 95%-confidence-intervals of power ratio and of amplitude variation of all signals are disjoint between PD and controls and show significant differences in group comparisons (power ratio: p = 0.000–0.004, r = 0.441–0.579; amplitude variation: p = 0.000–0.001, r = 0.37–0.67). The mean frequency shows a significant difference for ACC (p = 0.009, r = 0.43), but not for MMG. It remains open, whether this muscular output reflects changes of brain circuits and whether the results are reproducible and specific for PD.
Journal Article
Adaptive Force of hamstring muscles is reduced in patients with knee osteoarthritis compared to asymptomatic controls
by
Carnarius, Friederike
,
Dech, Silas
,
Schaefer, Laura V
in
Adaptive Force (AF)
,
Arthritis
,
Asymptomatic
2024
Background
Quadriceps strength deficits are known for patients with knee osteoarthritis (OA), whereas findings on hamstrings are less clear. The Adaptive Force (AF) as a special neuromuscular function has never been investigated in OA before. The maximal adaptive holding capacity (max. isometric AF; AFiso
max
) has been considered to be especially vulnerable to disruptive stimuli (e.g., nociception). It was hypothesized that affected limbs of OA patients would show clear deficits in AFiso
max
.
Methods
AF parameters and the maximal voluntary isometric contraction (MVIC) of hamstrings were assessed bilaterally comparing 20 patients with knee OA (ART) vs. controls (CON). AF was measured by a pneumatically driven device. Participants were instructed to maintain a static position despite an increasing load of the device. After reaching AFiso
max
, the hamstrings merged into eccentric action whereby the force increased further to the maximum (AF
max
). MVIC was recorded before and after AF trials. Mixed ANOVA was used to identify differences between and within ART and CON (comparing 1st and 2nd measured sides).
Results
AFiso
max
and the torque development per degree of yielding were significantly lower only for the more affected side of ART vs. CON (
p
≤ 0.001). The percentage difference of AFiso
max
amounted to − 40%. For the less affected side it was − 24% (
p
= 0.219). MVIC and AF
max
were significantly lower for ART vs. CON for both sides (
p
≤ 0.001). Differences of MVIC between ART vs. CON amounted to − 27% for the more, and − 30% for the less affected side; for AF
max
it was − 34% and − 32%, respectively.
Conclusion
The results suggest that strength deficits of hamstrings are present in patients with knee OA possibly attributable to nociception, generally lower physical activity/relief of lower extremities or fear-avoidance. However, the more affected side of OA patients seems to show further specific impairments regarding neuromuscular control reflected by the significantly reduced adaptive holding capacity and torque development during adaptive eccentric action. It is assumed that those parameters could reflect possible inhibitory nociceptive effects more sensitive than maximal strengths as MVIC and AF
max
. Their role should be further investigated to get more specific insights into these aspects of neuromuscular control in OA patients. The approach is relevant for diagnostics also in terms of severity and prevention.
Journal Article
Mechanomyography and acceleration show interlimb asymmetries in Parkinson patients without tremor compared to controls during a unilateral motor task
2021
The mechanical muscular oscillations are rarely the objective of investigations regarding the identification of a biomarker for Parkinson’s disease (PD). Therefore, the aim of this study was to investigate whether or not this specific motor output differs between PD patients and controls. The novelty is that patients without tremor are investigated performing a unilateral isometric motor task. The force of armflexors and the forearm acceleration (ACC) were recorded as well as the mechanomyography of the biceps brachii (MMGbi), brachioradialis (MMGbra) and pectoralis major (MMGpect) muscles using a piezoelectric-sensor-based system during a unilateral motor task at 70% of the MVIC. The frequency, a power-frequency-ratio, the amplitude variation, the slope of amplitudes and their interlimb asymmetries were analysed. The results indicate that the oscillatory behavior of muscular output in PD without tremor deviates from controls in some parameters: Significant differences appeared for the power-frequency-ratio (
p
= 0.001,
r
= 0.43) and for the amplitude variation (
p
= 0.003,
r
= 0.34) of MMGpect. The interlimb asymmetries differed significantly concerning the power-frequency-ratio of MMGbi (
p
= 0.013,
r
= 0.42) and MMGbra (
p
= 0.048,
r
= 0.39) as well as regarding the mean frequency (
p
= 0.004,
r
= 0.48) and amplitude variation of MMGpect (
p
= 0.033,
r
= 0.37). The mean (M) and variation coefficient (CV) of slope of ACC differed significantly (M:
p
= 0.022,
r
= 0.33; CV:
p
= 0.004,
r
= 0.43). All other parameters showed no significant differences between PD and controls. It remains open, if this altered mechanical muscular output is reproducible and specific for PD.
Journal Article
Manual Muscle Testing—Force Profiles and Their Reproducibility
by
Bittmann, Frank
,
Dech, Silas
,
Schaefer, Laura
in
adaptive force
,
Chronic fatigue syndrome
,
Electromyography
2020
The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a “break test” depends on the tester’s force rise and the patient’s ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers’ force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient’s reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given.
Journal Article
Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function
by
Schaefer, Laura V.
,
Bittmann, Frank N.
in
biomechanics
,
Electromyography
,
Holding isometric muscle action
2017
Background
In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically – thus resist an impacting force – or push isometrically – therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions – the holding vs. pushing one (HIMA vs PIMA) – can be distinguished by objective parameters.
Methods
Ten subjects performed two different measuring modes at 80% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS.
Results
Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 ± 8 s) in comparison with PIMA (41 ± 24 s;
p
= .005). In addition, during PIMA the longest isometric plateau amounted to 59.4% of the overall duration time of isometric measuring, during HIMA it lasted 31.6% (
p
= .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8–15 Hz and 10–29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA.
Conclusion
The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies.
Journal Article
Case report: Individualized pulsed electromagnetic field therapy in a Long COVID patient using the Adaptive Force as biomarker
2023
The increasing prevalence of Long COVID is an imminent public health disaster, and established approaches have not provided adequate diagnostics or treatments. Recently, anesthetic blockade of the stellate ganglion was reported to improve Long COVID symptoms in a small case series, purportedly by “rebooting” the autonomic nervous system. Here, we present a novel diagnostic approach based on the Adaptive Force (AF), and report sustained positive outcome for one severely affected Long COVID patient using individualized pulsed electromagnetic field (PEMF) at the area C7/T1. AF reflects the capacity of the neuromuscular system to adapt adequately to external forces in an isometric holding manner. In case, maximal isometric AF (AFiso max ) is exceeded, the muscle merges into eccentric muscle action. Thereby, the force usually increases further until maximal AF (AFmax) is reached. In case adaptation is optimal, AFiso max is ~99–100% of AFmax. This holding capacity (AFiso max ) was found to be vulnerable to disruption by unpleasant stimulus and, hence, was regarded as functional parameter. AF was assessed by an objectified manual muscle test using a handheld device. Prior to treatment, AFiso max was considerably lower than AFmax for hip flexors (62 N = ~28% AFmax) and elbow flexors (71 N = ~44% AFmax); i.e., maximal holding capacity was significantly reduced, indicating dysfunctional motor control. We tested PEMF at C7/T1, identified a frequency that improved neuromuscular function, and applied it for ~15 min. Immediately post-treatment, AFiso max increased to ~210 N (~100% AFmax) at hip and 184 N (~100% AFmax) at elbow. Subjective Long COVID symptoms resolved the following day. At 4 weeks post-treatment, maximal holding capacity was still on a similarly high level as for immediately post-treatment (~100% AFmax) and patient was symptom-free. At 6 months the patient's Long COVID symptoms have not returned. This case report suggests (1) AF could be a promising diagnostic for post-infectious illness, (2) AF can be used to test effective treatments for post-infectious illness, and (3) individualized PEMF may resolve post-infectious symptoms.
Journal Article
The Adaptive Force as a Potential Biomechanical Parameter in the Recovery Process of Patients with Long COVID
by
Schaefer, Laura V.
,
Bittmann, Frank N.
in
Adaptive Force
,
Biomechanics
,
Chronic fatigue syndrome
2023
Long COVID patients show symptoms, such as fatigue, muscle weakness and pain. Adequate diagnostics are still lacking. Investigating muscle function might be a beneficial approach. The holding capacity (maximal isometric Adaptive Force; AFisomax) was previously suggested to be especially sensitive for impairments. This longitudinal, non-clinical study aimed to investigate the AF in long COVID patients and their recovery process. AF parameters of elbow and hip flexors were assessed in 17 patients at three time points (pre: long COVID state, post: immediately after first treatment, end: recovery) by an objectified manual muscle test. The tester applied an increasing force on the limb of the patient, who had to resist isometrically for as long as possible. The intensity of 13 common symptoms were queried. At pre, patients started to lengthen their muscles at ~50% of the maximal AF (AFmax), which was then reached during eccentric motion, indicating unstable adaptation. At post and end, AFisomax increased significantly to ~99% and 100% of AFmax, respectively, reflecting stable adaptation. AFmax was statistically similar for all three time points. Symptom intensity decreased significantly from pre to end. The findings revealed a substantially impaired maximal holding capacity in long COVID patients, which returned to normal function with substantial health improvement. AFisomax might be a suitable sensitive functional parameter to assess long COVID patients and to support therapy process.
Journal Article
Case Study: Intra- and Interpersonal Coherence of Muscle and Brain Activity of Two Coupled Persons during Pushing and Holding Isometric Muscle Action
2022
Inter-brain synchronization is primarily investigated during social interactions but had not been examined during coupled muscle action between two persons until now. It was previously shown that mechanical muscle oscillations can develop coherent behavior between two isometrically interacting persons. This case study investigated if inter-brain synchronization appears thereby, and if differences of inter- and intrapersonal muscle and brain coherence exist regarding two different types of isometric muscle action. Electroencephalography (EEG) and mechanomyography/mechanotendography (MMG/MTG) of right elbow extensors were recorded during six fatiguing trials of two coupled isometrically interacting participants (70% MVIC). One partner performed holding and one pushing isometric muscle action (HIMA/PIMA; tasks changed). The wavelet coherence of all signals (EEG, MMG/MTG, force, ACC) were analyzed intra- and interpersonally. The five longest coherence patches in 8–15 Hz and their weighted frequency were compared between real vs. random pairs and between HIMA vs. PIMA. Real vs. random pairs showed significantly higher coherence for intra-muscle, intra-brain, and inter-muscle-brain activity (p < 0.001 to 0.019). Inter-brain coherence was significantly higher for real vs. random pairs for EEG of right and central areas and for sub-regions of EEG left (p = 0.002 to 0.025). Interpersonal muscle-brain synchronization was significantly higher than intrapersonal one, whereby it was significantly higher for HIMA vs. PIMA. These preliminary findings indicate that inter-brain synchronization can arise during muscular interaction. It is hypothesized both partners merge into one oscillating neuromuscular system. The results reinforce the hypothesis that HIMA is characterized by more complex control strategies than PIMA. The pilot study suggests investigating the topic further to verify these results on a larger sample size. Findings could contribute to the basic understanding of motor control and is relevant for functional diagnostics such as the manual muscle test which is applied in several disciplines, e.g., neurology, physiotherapy.
Journal Article