Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
215 result(s) for "Schambach, Axel"
Sort by:
A first step toward in vivo gene editing in patients
The first preliminary evidence that in vivo gene editing in a clinical setting is feasible with no early signs of severe adverse events comes from an ongoing clinical trial to treat transthyretin amyloidosis, a fatal monogenetic disease.
Use of Cell and Genome Modification Technologies to Generate Improved “Off-the-Shelf” CAR T and CAR NK Cells
The broad success of adoptive immunotherapy to treat human cancer has resulted in a paradigm shift in modern medicine. Modification of autologous and allogenic immune cells with chimeric antigen receptors (CAR) designed to target specific antigens on tumor cells has led to production of CAR T and CAR NK cell therapies, which are ever more commonly introduced into cancer patient treatment protocols. While allogenic T cells may offer advantages such as improved anti-tumor activity, they also carry the risk of adverse reactions like graft-versus-host disease. This risk can be mitigated by use of autologous immune cells, however, the time needed for T and/or NK cell isolation, modification and expansion may be too long for some patients. Thus, there is an urgent need for strategies to robustly produce \"off-the-shelf\" CAR T and CAR NK cells, which could be used as a bridging therapy between cancer diagnosis or relapse and allogeneic transplantation. Advances in genome modification technologies have accelerated the generation of designer cell therapy products, including development of \"off-the-shelf\" CAR T cells for cancer immunotherapy. The feasibility and safety of such approaches is currently tested in clinical trials. This review will describe cell sources for CAR-based therapies, provide background of current genome editing techniques and the applicability of these approaches for generation of universal \"off-the-shelf\" CAR T and NK cell therapeutics.
Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections
The increasing number of severe infections with multi-drug-resistant pathogens worldwide highlights the need for alternative treatment options. Given the pivotal role of phagocytes and especially alveolar macrophages in pulmonary immunity, we introduce a new, cell-based treatment strategy to target bacterial airway infections. Here we show that the mass production of therapeutic phagocytes from induced pluripotent stem cells (iPSC) in industry-compatible, stirred-tank bioreactors is feasible. Bioreactor-derived iPSC-macrophages (iPSC-Mac) represent a highly pure population of CD45 + CD11b + CD14 + CD163 + cells, and share important phenotypic, functional and transcriptional hallmarks with professional phagocytes, however with a distinct transcriptome signature similar to primitive macrophages. Most importantly, bioreactor-derived iPSC-Mac rescue mice from Pseudomonas aeruginosa -mediated acute infections of the lower respiratory tract within 4-8 h post intra-pulmonary transplantation and reduce bacterial load. Generation of specific immune-cells from iPSC-sources in scalable stirred-tank bioreactors can extend the field of immunotherapy towards bacterial infections, and may allow for further innovative cell-based treatment strategies. Pulmonary infections constitute a substantial health problem worldwide. Here the authors show that phagocytes similar to primitive macrophages can be generated from human induced pluripotent stem cells, by the use of industry-compatible, stirred-tank bioreactors, and applied as a cell-based therapy to treat acute bacterial infections in mice.
Retroviral gene therapy in Germany with a view on previous experience and future perspectives
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is “Spotlight on Germany,” the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Engineering CAR-T Cells for Improved Function Against Solid Tumors
Genetic engineering T cells to create clinically applied chimeric antigen receptor (CAR) T cells has led to improved patient outcomes for some forms of hematopoietic malignancies. While this has inspired the biomedical community to develop similar strategies to treat solid tumor patients, challenges such as the immunosuppressive character of the tumor microenvironment, CAR-T cell persistence and trafficking to the tumor seem to limit CAR-T cell efficacy in solid cancers. This review provides an overview of mechanisms that tumors exploit to evade eradication by CAR-T cells as well as emerging approaches that incorporate genetic engineering technologies to improve CAR-T cell activity against solid tumors.
Toward a Safer Integration Profile of MLV-based Retroviral Vectors
The stable retroviral integration of therapeutic transgene cassettes into patients' hematopoietic stem and progenitor cells enables gene therapy for various disorders of the blood and immune systems.1,2,3,4 However, adverse events related to insertional mutagenesis were observed in the first clinical gene therapy trials.5,6 These adverse events were caused mainly by the insertional activation of proto-oncogenes, such as LMO2 and MDS/EVI1, which occurred as a consequence of the retroviral integration preferences and the strength of the enhancer of the first-generation long terminal repeat (LTR)-driven gammaretroviral vectors. Two concepts have been proposed to achieve a \"safer\" integration profile.
Gene therapy on the move
The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment‐ and/or vector‐associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site‐directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. Graphical Abstract A timely review on the application of gene therapy for the correction of inherited diseases, including a description of the drawbacks from the early clinical trials, how the inherent risks are being successfully addressed and future perspectives.
Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors
Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4⁺ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shi Rag −/− mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.
Engineering a bacterial toxin deaminase from the DYW-family into a novel cytosine base editor for plants and mammalian cells
Base editors are precise editing tools that employ deaminases to modify target DNA bases. The DYW-family of cytosine deaminases is structurally and phylogenetically distinct and might be harnessed for genome editing tools. We report a novel CRISPR/Cas9-cytosine base editor using SsdA, a DYW-like deaminase and bacterial toxin. A G103S mutation in SsdA enhances C-to-T editing efficiency while reducing its toxicity. Truncations result in an extraordinarily small enzyme. The SsdA-base editor efficiently converts C-to-T in rice and barley protoplasts and induces mutations in rice plants and mammalian cells. The engineered SsdA is a highly efficient genome editing tool.