Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Schemmerer, Mathias"
Sort by:
Molecular epidemiology and genotype-specific disease severity of hepatitis E virus infections in Germany, 2010-2019
Zoonotic hepatitis E virus (HEV) is endemic in Europe. Genotype 3 (HEV-3) is predominant but information on subtype distribution, trends and clinical implications in Germany is scarce. We analysed 936 HEV RNA positive samples of human origin and corresponding national surveillance data from 2010 to 2019. Samples were referred to the National Consultant Laboratory and sequenced in at least one of four genomic regions. Sequences were analysed using bioinformatics methods and compared to the latest HEV reference set. 1,656 sequences were obtained from 300 female, 611 male and 25 of unknown sex aged 3-92 years (median 55 years). HEV-3c was predominant (67.3%) followed by HEV-3f, HEV-3e and HEV-3i(-like) with 14.3%, 9.7% and 4.0% (other subtypes ≤1.1%). The proportion of HEV-3 group 2 (3abchijklm) strains increased over time. Jaundice, upper abdominal pain, fever, hospitalization, and death due to HEV were significantly more often reported for patients infected with HEV-3 group 1 (3efg) compared to group 2. Larger spatio-temporal clusters of identical sequences were not observed. HEV-3 group 1 infections are more severe as compared to the predominant group 2. Detection of group 2 strains increased over the last years, possibly due to more frequent diagnosis of asymptomatic and mild courses. The diversity of strains and the space-time distribution is compatible with a foodborne zoonosis with supra-regional distribution of the infection vehicle (pork products).
Test Performance Characteristics of Anti-HEV IgG Assays Strongly Influence Hepatitis E Seroprevalence Estimates
Hepatitis E virus (HEV) seroprevalences of 0.3%-53% were reported from industrialized countries. Because these estimates may be influenced by detection assays, this study compares 3 frequently used tests for HEV detection: the MP Diagnostics HEV immunoglobulin G (IgG) enzymelinked immunosorbent assay (ELISA), the Axiom Diagnostics HEV IgG enzyme immunoassay (EIA), and the Mikrogen recomLine HEV IgG assay. Sera from 200 healthy healthcare workers and 30 individuals with acute HEV infection were analyzed. Among the healthy individuals, HEV IgG was found in 4.5% by the MP Diagnostics assay, in 29.5% by the Axiom Diagnostics assay, and in 18% by the Mikrogen assay. Among individuals with acute HEV infection, positive results were obtained for 83.3%, 100%, and 96.7%, respectively. Thus, the 3 assays show clear differences in diagnostic sensitivity.
Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System
The hepatitis E virus (HEV) is transmitted via the faecal–oral route in developing countries (genotypes 1 and 2) or through contaminated food and blood products worldwide (genotypes 3 and 4). In Europe, HEV subtypes 3c, 3e and 3f are predominant. HEV is the leading cause of acute hepatitis globally and immunocompromised patients are particularly at risk. Because of a lack of cell culture systems efficiently propagating wild-type viruses, research on HEV is mostly based on cell culture-adapted isolates carrying uncommon insertions in the hypervariable region (HVR). While optimizing the cell culture system using the cell culture-adapted HEV strain 47832c, we isolated three wild-type strains derived from clinical specimens representing the predominant spectrum of HEV in Europe. The novel isolates 14-16753 (3c), 14-22707 (3e) and 15-22016 (3f-like) replicate to high viral loads of 108, 109 and 106.5 HEV RNA copies/mL at 14 days post-inoculation, respectively. In addition, they could be kept as persistently infected cell cultures with constant high viral loads (~109 copies/mL) for more than a year. In contrast to the latest isolates 47832c, LBPR-0379 and Kernow-C1, the new isolates do not carry genome insertions in the HVR. Optimization of HEV cell culture identified amphotericin B, distinct salts and fetal calf serum (FCS) as important medium supplements. Overconfluent cell layers increased infectivity and virus production. PLC/PRF/5, HuH-7-Lunet BLR, A549 and HepG2/C3A supported replication with different efficiencies. The novel strains and optimized cell culture system may be useful for studies on the HEV life cycle, inactivation, specific drug and vaccine development.
HuH-7-Lunet BLR Cells Propagate Rat Hepatitis E Virus (HEV) in a Cell Culture System Optimized for HEV
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if de novo isolation of the virus from rat liver is possible. We tested the liver carcinoma cell lines PLC/PRF/5, HuH-7, and HuH-7-Lunet BLR for their susceptibility to HEV-C1 strains. Cells were infected with the cell culture-derived HEV-C1 strain R63 and rat liver-derived strain R68. Cells were maintained in MEMM medium, which was refreshed every 3–4 days. The viral load of HEV-C1 was determined by RT-qPCR in the supernatant and expressed as genome copies per mL (c/mL). Rat HEV replication was most efficient in the newly introduced HuH-7-Lunet BLR cell line. Even if the rat HEV isolate had been pre-adapted to PLC/PRF/5 by multiple passages, replication in HuH-7-Lunet BLR was still at least equally effective. Only HuH-7-Lunet BLR cells were susceptible to the isolation of HEV-C1 from the liver homogenate. These results suggest HuH-7-Lunet BLR as the most permissive cell line for rat HEV. Our HEV-C1 cell culture system may be useful for basic research, the animal-free generation of large amounts of the virus as well as for the testing of antiviral compounds and drugs.
No Evidence for Orthohepevirus C in Archived Human Samples in Germany, 2000–2020
Orthohepevirus C1, also known as rat hepatitis E virus (HEV), has been shown to sporadically cause disease in immunocompromised and immunocompetent adults. While routine serological assays vary in reactivity, rat HEV is not detected in routine HEV RT-PCR. Thus, such infections could be either missed or misclassified as conventional HEV (Orthohepevirus A) infections. We conducted a retrospective screening study among serum and plasma samples from patients suspected of having HEV infection, which were archived at the national consultant laboratory for HAV and HEV between 2000 and 2020. We randomly selected n = 200 samples, which were initially tested reactive (positive or borderline) for HEV-IgM and negative for HEV RNA and re-examined them using a highly sensitive Orthohepevirus C genotype 1-specific in-house RT-qPCR (LoD 95: 6.73 copies per reaction) and a nested RT-PCR broadly reactive for Orthohepevirus A and C. Conventional sanger sequencing was conducted for resulting PCR products. No atypical HEV strains were detected (0 of 200 [0.0%; 95% confidence interval: 0.0%–1.89%], indicating that Orthohepevirus C infections in the investigated population (persons with clinical suspicion of hepatitis E and positive HEV-IgM) are very rare.
varVAMP: degenerate primer design for tiled full genome sequencing and qPCR
Time- and cost-saving surveillance of viral pathogens is achieved by tiled sequencing in which a viral genome is amplified in overlapping PCR amplicons and qPCR. However, designing pan-specific primers for viral pathogens with high genomic variability represents a significant challenge. Here, we present a bioinformatics command-line tool, called varVAMP ( var iable v irus amp licons), which addresses this issue. It relies on multiple sequence alignments of highly variable virus sequences and enables degenerate primer design for qPCR or tiled amplicon whole genome sequencing. We demonstrate the utility of varVAMP by designing and evaluating novel pan-specific primer schemes suitable for sequencing the genomes of SARS-CoV-2, Hepatitis E virus, rat Hepatitis E virus, Hepatitis A virus, Borna-disease-virus-1, and Poliovirus using clinical samples. Importantly, we also designed primers on the same input data using the software packages PrimalScheme and Olivar and showed that varVAMP minimizes primer mismatches most efficiently. Finally, we established highly sensitive and specific Poliovirus qPCR assays that could potentially simplify current Poliovirus surveillance. varVAMP is open-source and available through PyPI, UseGalaxy, Bioconda, and https://github.com/jonas-fuchs/varVAMP . varVAMP is open-source software for designing primers for tiled-amplicon sequencing and qPCR. It simplifies primer design for viral pathogens with high genomic variability by including sequence variations into primer sequences.
Hepatitis E Virus Infection: Circulation, Molecular Epidemiology, and Impact on Global Health
Infection with hepatitis E virus (HEV) represents the most common source of viral hepatitis globally. Although infecting over 20 million people annually in endemic regions, with major outbreaks described since the 1950s, hepatitis E remains an underestimated disease. This review gives a current view of the global circulation and epidemiology of this emerging virus. The history of HEV, from the first reported enteric non-A non-B hepatitis outbreaks, to the discovery of the viral agent and the molecular characterization of the different human pathogenic genotypes, is discussed. Furthermore, the current state of research regarding the virology of HEV is critically assessed, and the challenges towards prevention and diagnosis, as well as clinical risks of the disease described. Together, these points aim to underline the significant impact of hepatitis E on global health and the need for further in-depth research to better understand the pathophysiology and its role in the complex disease manifestations of HEV infection.
Hepatitis A Virus Incidence Rates and Biomarker Dynamics for Plasma Donors, United States
The United States is currently affected by widespread hepatitis A virus (HAV) outbreaks. We investigated HAV incidence rates among source plasma donors in the United States since 2016. Serial donations from HAV-positive frequent donors were analyzed for common biologic markers to obtain a detailed picture of the course of infection. We found a considerable increase in incidence rates with shifting outbreak hotspots over time. Although individual biomarker profiles were highly variable, HAV RNA typically had a high peak and a biphasic decrease and often remained detectable for several months. One donor had a biomarker pattern indicative of previous exposure. Our findings show that current HAV outbreaks have been spilling over into the plasma donor population. The detailed results presented improve our comprehension of HAV infection and related public health aspects. In addition, the capture of full RNA curves enables estimation of HAV doubling time.
Continuous Circulation of Hepatitis E and A Viruses During COVID-19 Pandemic Lockdowns in Munich, Germany—Experience from Three Years of Wastewater Surveillance
The COVID-19 pandemic has increased interest in wastewater-based epidemiology (WBE) as a reliable and cost-effective framework for monitoring the spread of microbes. However, WBE frameworks have rarely been applied to the study of fecal–oral transmissible diseases, except for poliomyelitis. Here, we investigated the presence of hepatitis A virus (HAV) and hepatitis E virus (HEV) in wastewater in Munich. We collected wastewater samples between July 2020 and November 2023. A total of 186 samples were processed using centrifugation and analyzed for HAV- and HEV-RNA using RT-qPCR. As a reference, we used notification data from clinically or laboratory-diagnosed hepatitis A and E cases. Lockdown stringency levels were derived from official documentation. Our results show that 87.6% of wastewater samples were positive for HEV at concentrations of 9.0 × 101 to 2.5 × 105 copies/L, while HAV was only detectable in 7.5% of the samples at viral loads of 4.6 × 101 to 2.4 × 103 copies/L. We also detected differences in HEV concentrations but not in case numbers when comparing lockdown and no-lockdown periods. This study covers all but the first lockdowns in Bavaria. We present a unique real-world dataset evaluating the impact of lockdown interventions on hepatitis A and E case numbers, as well as on the concentrations of HAV and HEV in wastewater. Person-to-person spread and eating out appear to have contributed to the transmission of HEV. In addition, the consistently high HEV concentrations in sewage support the findings of serological studies, indicating a substantial burden of undetected subclinical infections.
Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line
Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown.