Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
75 result(s) for "Scheper, Rik J"
Sort by:
The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models
Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into and systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.
Proteasome inhibitors as experimental therapeutics of autoimmune diseases
Current treatment strategies for rheumatoid arthritis (RA) consisting of disease-modifying anti-rheumatic drugs or biological agents are not always effective, hence driving the demand for new experimental therapeutics. The antiproliferative capacity of proteasome inhibitors (PIs) has received considerable attention given the success of their first prototypical representative, bortezomib (BTZ), in the treatment of B cell and plasma cell-related hematological malignancies. Therapeutic application of PIs in an autoimmune disease setting is much less explored, despite a clear rationale of (immuno) proteasome involvement in (auto)antigen presentation, and PIs harboring the capacity to inhibit the activation of nuclear factor-κB and suppress the release of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. Here, we review the clinical positioning of (immuno) proteasomes in autoimmune diseases, in particular RA, systemic lupus erythematosus, Sjögren’s syndrome and sclerodema, and elaborate on (pre)clinical data related to the impact of BTZ and next generation PIs on immune effector cells (T cells, B cells, dendritic cells, macrophages, osteoclasts) implicated in their pathophysiology. Finally, factors influencing long-term efficacy of PIs, their current (pre)clinical status and future perspectives as anti-inflammatory and anti-arthritic agents are discussed.
Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial
The granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells vaccine (GVAX) has antitumour activity against prostate cancer; preclinical studies have shown potent synergy when combined with ipilimumab, an antibody that blocks cytotoxic T-lymphocyte antigen 4. We aimed to assess the safety of combined treatment with GVAX and ipilimumab in patients with metastatic castration-resistant prostate cancer (mCRPC). We did an open-labelled, single-centre, dose-escalation study of ipilimumab concurrent with a fixed dose of GVAX, with a subsequent expansion phase, both at the VU University Medical Centre (Amsterdam, Netherlands). Eligible patients had documented mCRPC and had not been previously treated with chemotherapy. All patients received a 5×108 cell priming dose of GVAX intradermally on day 1 with subsequent intradermal injections of 3×108 cells every 2 weeks for 24 weeks. The vaccinations were combined with intravenous ipilimumab every 4 weeks. We enrolled patients in cohorts of three; each cohort received an escalating dose of ipilimumab at 0·3, 1·0, 3·0, or 5·0 mg/kg. Our primary endpoint was safety. This study is registered with ClinicalTrials.gov, number NCT01510288. We enrolled 12 patients into our dose-escalation cohort. We did not record any severe immune-related adverse events at the first two dose levels. At the 3·0 mg/kg dose level, one patient had grade 2 and two patients grade 3 hypophysitis; at the 5·0 mg/kg dose level, two patients had grade 3 hypophysitis and one patient developed grade 4 sarcoid alveolitis (a dose-limiting toxic effect). Due to observed clinical activity and toxic events, we decided to expand the 3·0 mg/kg dose level, rather than enrol a further three patients at the 5·0 mg/kg level. 16 patients were enrolled in the expansion cohort, two of whom developed grade 2 hypophysitis, three colitis (one grade 1 and two grade 2), and one grade 3 hepatitis—all immune-related adverse events. The most common adverse events noted in all 28 patients were injection-site reactions (grade 1–2 events seen in all patients), fatigue (grade 1–2 in 20 patients, grade 3 in two), and pyrexia (grade 1–2 in 15 patients, grade 3 in one). 50% or greater declines in prostate-specific antigen from baseline was recorded in seven patients (25%); all had received 3·0 mg/kg or 5·0 mg/kg ipilimumab. GVAX combined with 3·0 mg/kg ipilimumab is tolerable and safe for patients with mCRPC. Further research on the combined treatment of patients with mCRPC with vaccination and ipilimumab is warranted. Cell Genesys Inc, Prostate Cancer Foundation, Dutch Cancer Society (KWF-VU 2006-3697), and Foundation Stichting VUmc Cancer Center Amsterdam.
Autocrine Regulation of Re-Epithelialization After Wounding by Chemokine Receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3
This study identifies chemokine receptors involved in an autocrine regulation of re-epithelialization after skin tissue damage. We determined which receptors, from a panel of 13, are expressed in healthy human epidermis and which monospecific chemokine ligands, secreted by keratinocytes, were able to stimulate migration and proliferation. A reconstructed epidermis cryo(freeze)-wound model was used to assess chemokine secretion after wounding and the effect of pertussis toxin (chemokine receptor blocker) on re-epithelialization and differentiation. Chemokine receptors CCR1, CCR3, CCR4, CCR6, CCR10, CXCR1, CXCR2, CXCR3, and CXCR4 were expressed in epidermis. No expression of CCR2, CCR5, CCR7, and CCR8 was observed by either immunostaining or flow cytometry. Five chemokine receptors (CCR1, CCR10, CXCR1, CXCR2, and CXCR3) were identified, the corresponding monospecific ligands (CCL14, CCL27, CXCL8, CXCL1, CXCL10, respectively) of which were not only able to stimulate keratinocyte migration and/or proliferation but were also secreted by keratinocytes after introducing cryo-wounds into epidermal equivalents. Blocking of receptor–ligand interactions with pertussis toxin delayed re-epithelialization, but did not influence differentiation (as assessed by formation of basal layer, spinous layer, granular layer, and stratum corneum) after cryo-wounding. Taken together, these results confirm that an autocrine positive-feedback loop of epithelialization exists in order to stimulate wound closure after skin injury.
Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines
The field of tumor vaccination is currently undergoing a shift in focus, from individualized tailor-made vaccines to more generally applicable vaccine formulations. Although primarily predicated by financial and logistic considerations, stemming from a growing awareness that clinical development for wide-scale application can only be achieved through backing from major pharmaceutical companies, these new approaches are also supported by a growing knowledge of the intricacies and minutiae of antigen presentation and effector T-cell activation. Here, the development of whole-cell tumor and dendritic cell (DC)-based vaccines from an individualized autologous set-up to a more widely applicable allogeneic approach will be discussed as reflected by translational studies carried out over the past two decades at our laboratories and clinics in the vrije universiteit medical center (VUmc) in Amsterdam, The Netherlands.
The Breast Cancer Resistance Protein Protects against a Major Chlorophyll-Derived Dietary Phototoxin and Protoporphyria
The breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette family of drug transporters and confers resistance to various anticancer drugs. We show here that mice lacking Bcrp1/Abcg2 become extremely sensitive to the dietary chlorophyll-breakdown product pheophorbide a, resulting in severe, sometimes lethal phototoxic lesions on light-exposed skin. Pheophorbide a occurs in various plant-derived foods and food supplements. Bcrp1 transports pheophorbide a and is highly efficient in limiting its uptake from ingested food. Bcrp1-/-mice also displayed a previously unknown type of protoporphyria. Erythrocyte levels of the heme precursor and phototoxin protoporphyrin IX, which is structurally related to pheophorbide a, were increased 10-fold. Transplantation with wild-type bone marrow cured the protoporphyria and reduced the phototoxin sensitivity of Bcrp1-/-mice. These results indicate that humans or animals with low or absent BCRP activity may be at increased risk for developing protoporphyria and diet-dependent phototoxicity and provide a striking illustration of the importance of drug transporters in protection from toxicity of normal food constituents.
The Cellular Phenotype of Roberts Syndrome Fibroblasts as Revealed by Ectopic Expression of ESCO2
Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for ESCO2 in the maintenance of genome stability.
T cell infiltration on local CpG-B delivery in early-stage melanoma is predominantly related to CLEC9A+CD141+ cDC1 and CD14+ antigen-presenting cell recruitment
BackgroundWe previously reported CpG-B injection at the primary tumor excision site prior to re-excision and sentinel node biopsy to result in immune activation of the sentinel lymph node (SLN), increased melanoma-specific CD8+ T cell rates in peripheral blood, and prolonged recurrence-free survival. Here, we assessed recruitment and activation of antigen-presenting cell (APC) subsets in the SLN and at the injection site in relation to T cell infiltration.MethodsRe-excision skin specimens from patients with clinical stage I-II melanoma, collected 7 days after intradermal injection of either saline (n=10) or 8 mg CpG-B (CPG7909, n=12), were examined by immunohistochemistry, quantifying immune subsets in the epidermis, papillary, and reticular dermis. Counts were related to flow cytometric data from matched SLN samples. Additional in vitro cultures and transcriptional analyses on peripheral blood mononuclear cells (PBMCs) were performed to ascertain CpG-induced APC activation and chemokine profiles.ResultsSignificant increases in CD83+, CD14+, CD68+, and CD123+ APC were observed in the reticular dermis of CpG-B-injected skin samples. Fluorescent double/triple staining revealed recruitment of both CD123+BDCA2+ plasmacytoid dendritic cells (DCs) and BDCA3/CD141+CLEC9A+ type-1 conventional DC (cDC1), of which only the cDC1 showed considerable levels of CD83 expression. Simultaneous CpG-B-induced increases in T cell infiltration were strongly correlated with both cDC1 and CD14 counts. Moreover, cDC1 and CD14+ APC rates in the reticular dermis and matched SLN suspensions were positively correlated. Flow cytometric, transcriptional, and chemokine release analyses of PBMC, on in vitro or in vivo exposure to CpG-B, indicate a role for the activation and recruitment of both cDC1 and CD14+ monocyte-derived APCs in the release of CXCL10 and subsequent T cell infiltration.ConclusionThe CpG-B-induced concerted recruitment of cDC1 and CD14+ APC to the injection site and its draining lymph nodes may allow for both the (cross-)priming of T cells and their subsequent homing to effector sites.
IL-10 Conditioning of Human Skin Affects the Distribution of Migratory Dendritic Cell Subsets and Functional T Cell Differentiation
In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14(+)CD141(+)DC-SIGN(+) DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a(+) subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8(+) T cells, migration of immature CD14(+) DDC was accompanied by increased release of IL-10, poor expansion of CD4(+) and CD8(+) T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.
Drug Insight: resistance to methotrexate and other disease-modifying antirheumatic drugs—from bench to bedside
Disease-modifying antirheumatic drugs are commonly used to treat rheumatoid arthritis, but prolonged usage often results in drug related toxicity, loss of effi cacy, or both. The molecular mechanisms that might be involved in the development of resistance to such drugs, and strategies to overcome this phenomenon, are outlined. The chronic nature of rheumatoid arthritis (RA) means that patients require drug therapy for many years. Many RA patients, however, have to discontinue treatment because of drug-related toxic effects, loss of efficacy, or both. The underlying molecular cause for loss of efficacy of antirheumatic drugs is not fully understood, but it might be mediated, at least in part, by mechanisms shared with resistance to anticancer drugs. This Review outlines molecular mechanisms that could be involved in the onset of resistance to, or the loss of efficacy of, disease-modifying antirheumatic drugs in RA patients, including methotrexate, sulfasalazine, chloroquine, hydroxychloroquine, azathioprine, and leflunomide. The mechanisms suggested are based on findings from experimental laboratory studies of specific drug-uptake and drug-efflux transporters belonging to the superfamily of multidrug-resistance transporters, alterations in intracellular drug metabolism, and genetic polymorphisms of drug transporters and metabolic enzymes. We also discuss strategies to overcome resistance and the current clinical studies aiming to predict response and risk of toxic effects. More in-depth knowledge of the mechanisms behind these features could help facilitate a more efficient use of disease-modifying antirheumatic drugs. Key Points Disease-modifying antirheumatic drugs (DMARDs) and anticancer drugs share common molecular mechanisms of resistance Resistance to DMARDs can be acquired by upregulation of drug-efflux proteins belonging to the family of multidrug-resistance transporters Multidrug-resistance proteins exert primary physiologic functions in the cellular export of inflammatory mediators The current knowledge of molecular mechanisms of resistance to methotrexate facilitates the prediction of patient response to methotrexate by target-directed genetic and biochemical screening of blood cells Identification of the molecular mechanisms of resistance to various DMARDs opens up new strategies for circumvention of drug resistance