Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
54 result(s) for "Scherzer, C R"
Sort by:
Large-scale pathway specific polygenic risk and transcriptomic community network analysis identifies novel functional pathways in Parkinson disease
Polygenic inheritance plays a central role in Parkinson disease (PD). A priority in elucidating PD etiology lies in defining the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological processes underlying PD using the largest currently available cohorts of genetic and gene expression data from International Parkinson’s Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership-Parkinson’s disease initiative (AMP-PD), among other sources. We applied large-scale gene-set specific polygenic risk score (PRS) analyses to assess the role of common variation on PD risk focusing on publicly annotated gene sets representative of curated pathways. We nominated specific molecular sub-processes underlying protein misfolding and aggregation, post-translational protein modification, immune response, membrane and intracellular trafficking, lipid and vitamin metabolism, synaptic transmission, endosomal–lysosomal dysfunction, chromatin remodeling and apoptosis mediated by caspases among the main contributors to PD etiology. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data and found evidence for a burden of rare damaging alleles in a range of processes, including neuronal transmission-related pathways and immune response. We explored enrichment linked to expression cell specificity patterns using single-cell gene expression data and demonstrated a significant risk pattern for dopaminergic neurons, serotonergic neurons, hypothalamic GABAergic neurons, and neural progenitors. Subsequently, we created a novel way of building de novo pathways by constructing a network expression community map using transcriptomic data derived from the blood of PD patients, which revealed functional enrichment in inflammatory signaling pathways, cell death machinery related processes, and dysregulation of mitochondrial homeostasis. Our analyses highlight several specific promising pathways and genes for functional prioritization and provide a cellular context in which such work should be done.
Safety and efficacy of venglustat in GBA1-associated Parkinson's disease: an international, multicentre, double-blind, randomised, placebo-controlled, phase 2 trial
Variants in the GBA1 gene, which encodes lysosomal acid glucocerebrosidase, are among the most common genetic risk factors for Parkinson's disease and are associated with faster disease progression. The mechanisms involved are unresolved but might include accumulation of glucosylceramide. Venglustat is a brain-penetrant glucosylceramide synthase inhibitor that, in previous studies, reduced amounts of the glycosphingolipid. We aimed to assess the safety, efficacy, and target engagement of venglustat in people with early-stage Parkinson's disease carrying pathogenic GBA1 variants. MOVES-PD part 2 was a randomised, double-blinded, placebo-controlled phase 2 study done at 52 centres (academic sites, specialty clinics, and general neurology centres) in 16 countries. Eligible adults aged 18–80 years with Parkinson's disease (Hoehn and Yahr stage ≤2) and one or more GBA1 variants were randomly assigned using an interactive voice–response system (1:1) to 52 weeks of treatment with oral venglustat (15 mg/day) or matching placebo. Investigators, site personnel, participants, and their caregivers were masked to treatment allocation. The primary outcome measure was the change from baseline to 52 weeks in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III combined score (a higher score indicates greater impairment), and it was analysed in a modified intention-to-treat population (ie, all randomly assigned participants with a baseline and at least one post-baseline measurement during the treatment period). This study was registered with ClinicalTrials.gov (NCT02906020) and is closed to recruitment. Between Dec 15, 2016, and May 27, 2021, 221 participants were randomly assigned to venglustat (n=110) or placebo (n=111). The least squares mean change in MDS-UPDRS parts II and III combined score was 7·29 (SE 1·36) for venglustat (n=96) and 4·71 (SE 1·27) for placebo (n=105); the absolute difference between groups was 2·58 (95% CI –1·10 to 6·27; p=0·17). The most common treatment-emergent adverse events (TEAEs) were constipation and nausea (both were reported by 23 [21%] of 110 participants in the venglustat group and eight [7%] of 111 participants in the placebo group). Serious TEAEs were reported for 12 (11%) participants in each group. There was one death in the venglustat group owing to an unrelated cardiopulmonary arrest and there were no deaths in the placebo group. In people with GBA1-associated Parkinson's disease in our study, venglustat had a satisfactory safety profile but showed no beneficial treatment effect compared with placebo. These findings indicate that glucosylceramide synthase inhibition with venglustat might not be a viable therapeutic approach for GBA1-associated Parkinson's disease. Sanofi.
Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse
Huntington disease (HD) is a progressive neurodegenerative disease that affects 30,000 individuals in North America. Treatments that slow its relentless course are not yet available, and biomarkers that can reliably measure disease activity and therapeutic response are urgently needed to facilitate their development. Here, we interrogated 119 human blood samples for transcripts associated with HD. We found that the dynamic regulator of chromatin plasticity H2A histone family, member Y (H2AFY) is specifically overexpressed in the blood and frontal cortex of patients with HD compared with controls. This association precedes the onset of clinical symptoms, was confirmed in two mouse models, and was independently replicated in cross-sectional and longitudinal clinical studies comprising 142 participants. A histone deacetylase inhibitor that suppresses neurodegeneration in animal models reduces H2AFY levels in a randomized phase II clinical trial. This study identifies the chromatin regulator H2AFY as a potential biomarker associated with disease activity and pharmacodynamic response that may become useful for enabling disease-modifying therapeutics for HD.
Genetic screening and metabolomics identify glial adenosine metabolism as a therapeutic target in Parkinson's disease
Parkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.Parkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.
Large-scale pathway-specific polygenic risk, transcriptomic community networks and functional inferences in Parkinson disease
Polygenic inheritance plays a central role in Parkinson's disease (PD). A priority in elucidating PD etiology lies in defining the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological pathways underlying PD using the largest currently available cohorts of genetic data and gene expression data from International Parkinson's Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership - Parkinson's disease initiative (AMP-PD), among other sources. We placed these insights into a cellular context. We applied large-scale pathway-specific polygenic risk score (PRS) analyses to assess the role of common variation on PD risk in a cohort of 457,110 individuals by focusing on a compilation of 2,199 publicly annotated gene sets representative of curated pathways, of which we nominate 46 pathways associated with PD risk. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data, including 4,331 individuals. We explored enrichment linked to expression cell specificity patterns using single-cell gene expression data and demonstrated a significant risk pattern for adult dopaminergic neurons, serotonergic neurons, and radial glia. Subsequently, we created a novel way of building de novo pathways by constructing a network expression community map using transcriptomic data derived from the blood of 1,612 PD patients, which revealed 54 connecting networks associated with PD. Our analyses highlight several promising pathways and genes for functional prioritization and provide a cellular context in which such work should be done. Competing Interest Statement Financial Disclosures: Mike A. Nalls participation is supported by a consulting contract between Data Tecnica International and the National Institute on Aging, NIH, Bethesda, MD, USA, as a possible conflict of interest Dr. Nalls also consults for Neuron 23s Inc, Lysosomal Therapeutics Inc, and Illumina Inc among others. C.R.S. is named as co-inventor on a US patent application on sphingolipids biomarkers that is jointly held by Brigham & Women's Hospital and Sanofi. C.R.S has consulted for Sanofi Inc.; has collaborated with Pfizer, Opko, and Proteome Sciences, and Genzyme Inc. No other disclosures were reported.
Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson’s disease
A key driver of patients’ well-being and clinical trials for Parkinson’s disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P  = 2.78 × 10 −11 ), identify suggestive evidence for TMEM108 (HR = 2.86, P  = 2.09 × 10 −8 ) and WWOX (HR = 2.12, P  = 2.37 × 10 −8 ) as progression loci, and confirm associations for GBA (HR = 1.93, P  = 0.0002) and APOE (HR = 1.48, P  = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility. A genome-wide survival study identifies variants at RIMS2 associated with progression of Parkinson’s disease to dementia and highlights divergence in the genetic architecture of disease onset and progression.
Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression
The canonical WNT signaling pathway is crucial for intestinal stem cell renewal and aberrant WNT signaling is an early event in colorectal cancer (CRC) development. Here, we show for the first time that WNT2 is one of the most significantly induced genes in CRC stroma as compared to normal stroma. The impact of stromal WNT2 on carcinoma formation or progression was not addressed so far. Canonical WNT/β-catenin signaling was assessed using a 7TGP-reporter construct. Furthermore, effects of WNT2 on fibroblast migration and invasion were determined using siRNA-mediated gene silencing. Tumor cell invasion was studied using organotypic raft cultures and in vivo significance was assessed via a xenograft mouse model. We identified cancer-associated fibroblasts (CAFs) as the main source of WNT2. CAF-derived WNT2 activated canonical signaling in adenomatous polyposis coli/β-catenin wild-type colon cancer cells in a paracrine fashion, whereas no hyperactivation was detectable in cell lines harboring mutations in the adenomatous polyposis coli/β-catenin pathway. Furthermore, WNT2 activated autocrine canonical WNT signaling in primary fibroblasts, which was associated with a pro-migratory and pro-invasive phenotype. We identified FZD8 as the putative WNT2 receptor in CAFs. Three-dimensional organotypic co-culture assays revealed that WNT2-mediated fibroblast motility and extracellular matrix remodeling enhanced cancer cell invasion of cell lines even harboring mutations in the adenomatous polyposis coli/β-catenin pathway. Thus, suggesting a tumor-promoting influence on a broad range of CRC. In line, WNT2 also promotes tumor growth, invasion and metastasis in vivo . Moreover, high WNT2 expression is associated with poor prognosis in human CRC. The identification of the pro-malignant function of stromal derived WNT2 in CRC classifies WNT2 and its receptor as promising stromal targets to confine cancer progression in combination with conventional or targeted therapies.
Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture
The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA . Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s disease and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition. Whole-genome sequence analysis identifies five independent risk loci for Lewy body dementia and demonstrates overlapping genetic architecture with Alzheimer’s and Parkinson’s diseases.
Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca²⁺ affinities
In response to drought stress, the phytohormone abscisic acid (ABA) induces stomatal closure. Thereby the stress hormone activates guard cell anion channels in a calcium-dependent, as well as -independent, manner. Open stomata 1 protein kinase (OST1) and ABI1 protein phosphatase (ABA insensitive 1) represent key components of calcium-independent ABA signaling. Recently, the guard cell anion channel SLAC1 was identified. When expressed heterologously SLAC1 remained electrically silent. Upon coexpression with Ca²⁺-independent OST1, however, SLAC1 anion channels appear activated in an ABI1-dependent manner. Mutants lacking distinct calcium-dependent protein kinases (CPKs) appeared impaired in ABA stimulation of guard cell ion channels, too. To study SLAC1 activation via the calcium-dependent ABA pathway, we studied the SLAC1 response to CPKs in the Xenopus laevis oocyte system. Split YFP-based protein-protein interaction assays, using SLAC1 as the bait, identified guard cell expressed CPK21 and 23 as major interacting partners. Upon coexpression of SLAC1 with CPK21 and 23, anion currents document SLAC1 stimulation by these guard cell protein kinases. Ca²⁺-sensitive activation of SLAC1, however, could be assigned to the CPK21 pathway only because CPK23 turned out to be rather Ca²⁺-insensitive. In line with activation by OST1, CPK activation of the guard cell anion channel was suppressed by ABI1. Thus the CPK and OST1 branch of ABA signal transduction in guard cells seem to converge on the level of SLAC1 under the control of the ABI1/ABA-receptor complex.