Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Schindlbacher, Sabine"
Sort by:
Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic
by
Lamboll, Robin D.
,
Super, Ingrid
,
Pérez García-Pando, Carlos
in
Air pollution
,
Analysis
,
Anthropogenic factors
2023
The 2020 COVID-19 crisis caused an unprecedented drop in anthropogenic emissions of air pollutants and greenhouse gases. Given that emissions estimates from official national inventories for the year 2020 were not reported until 2 years later, new and non-traditional datasets to estimate near-real-time emissions became particularly relevant and widely used in international monitoring and modelling activities during the pandemic. This study investigates the impact of the COVID-19 pandemic on 2020 European (the 27 EU member states and the UK) emissions by comparing a selection of such near-real-time emission estimates, with the official inventories that were subsequently reported in 2022 under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the United Nations Framework Convention on Climate Change (UNFCCC). Results indicate that annual changes in total 2020 emissions reported by official and near-real-time estimates are fairly in line for most of the chemical species, with NOx and fossil fuel CO2 being reported as the ones that experienced the largest reduction in Europe in all cases. However, large discrepancies arise between the official and non-official datasets when comparing annual results at the sector and country level, indicating that caution should be exercised when estimating changes in emissions using specific near-real-time activity datasets, such as time mobility data derived from smartphones. The main examples of these differences are observed for the manufacturing industry NOx (relative changes ranging between −21.4 % and −5.4 %) and road transport CO2 (relative changes ranging between −29.3 % and −5.6 %) total European emissions. Additionally, significant discrepancies are observed between the quarterly and monthly distribution of emissions drops reported by the various near-real-time inventories, with differences of up to a factor of 1.5 for total NOx during April 2020, when restrictions were at their maximum. For residential combustion, shipping and the public energy industry, results indicate that changes in emissions that occurred between 2019 and 2020 were mainly dominated by non-COVID-19 factors, including meteorology, the implementation of the Global Sulphur Cap and the shutdown of coal-fired power plants as part of national decarbonization efforts, respectively. The potential increase in NMVOC emissions from the intensive use of personal protective equipment such as hand sanitizer gels is considered in a heterogeneous way across countries in officially reported inventories, indicating the need for some countries to base their calculations on more advanced methods. The findings of this study can be used to better understand the uncertainties in near-real-time emissions and how such emissions could be used in the future to provide timely updates to emission datasets that are critical for modelling and monitoring applications.
Journal Article
Emission ensemble approach to improve the development of multi-scale emission inventories
2024
Many studies have shown that emission inventories are one of the inputs with the most critical influences on the results of air quality modelling. Comparing emission inventories among themselves is, therefore, essential to build confidence in emission estimates. In this work, we extend the approach of Thunis et al. (2022) to compare emission inventories by building a benchmark that serves as a reference for comparisons. This benchmark is an ensemble that is based on three state-of-the-art EU-wide inventories: CAMS-REG, EMEP and EDGAR. The ensemble-based methodology screens differences between inventories and the ensemble. It excludes differences that are not relevant and identifies among the remaining ones those that need special attention. We applied the ensemble-based screening to both an EU-wide and a local (Poland) inventory.The EU-wide analysis highlighted a large number of inconsistencies. While the origin of some differences between EDGAR and the ensemble can be identified, their magnitude remains to be explained. These differences mostly occur for SO2 (sulfur oxides), PM (particulate matter) and NMVOC (non-methane volatile organic carbon) for the industrial and residential sectors and reach a factor of 10 in some instances. Spatial inconsistencies mostly occur for the industry and other sectors.At the local scale, inconsistencies relate mostly to differences in country sectorial shares that result from different sectors/activities being accounted for in the two types of inventories. This is explained by the fact that some emission sources are omitted in the local inventory due to a lack of appropriate geographically allocated activity data. We identified sectors and pollutants for which discussion between local and EU-wide emission compilers would be needed in order to reduce the magnitude of the observed differences (e.g. in the residential and industrial sectors).The ensemble-based screening proved to be a useful approach to spot inconsistencies by reducing the number of necessary inventory comparisons. With the progressive resolution of inconsistencies and associated inventory improvements, the ensemble will improve. In this sense, we see the ensemble as a useful tool to motivate the community around a single common benchmark and monitor progress towards the improvement of regionally and locally developed emission inventories.
Journal Article