Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"Schleef, Martin"
Sort by:
Targeted Extracellular Vesicle Gene Therapy for Modulating Alpha-Synuclein Expression in Gut and Spinal Cord
by
Schleef, Martin
,
Alvarez-Erviti, Lydia
,
Verona, Guglielmo
in
alpha-synuclein
,
Animals
,
Brain research
2023
The development of effective disease-modifying therapies to halt Parkinson’s disease (PD) progression is required. In a subtype of PD patients, alpha-synuclein pathology may start in the enteric nervous system (ENS) or autonomic peripheral nervous system. Consequently, strategies to decrease the expression of alpha-synuclein in the ENS will be an approach to prevent PD progression at pre-clinical stages in these patients. In the present study, we aimed to assess if anti-alpha-synuclein shRNA-minicircles (MC) delivered by RVG-extracellular vesicles (RVG-EV) could downregulate alpha-synuclein expression in the intestine and spinal cord. RVG-EV containing shRNA-MC were injected intravenously in a PD mouse model, and alpha-synuclein downregulation was evaluated by qPCR and Western blot in the cord and distal intestine. Our results confirmed the downregulation of alpha-synuclein in the intestine and spinal cord of mice treated with the therapy. We demonstrated that the treatment with anti-alpha-synuclein shRNA-MC RVG-EV after the development of pathology is effective to downregulate alpha-synuclein expression in the brain as well as in the intestine and spinal cord. Moreover, we confirmed that a multidose treatment is necessary to maintain downregulation for long-term treatments. Our results support the potential use of anti-alpha-synuclein shRNA-MC RVG-EV as a therapy to delay or halt PD pathology progression.
Journal Article
Recombinant expression of Barnase in Escherichia coli and its application in plasmid purification
by
Risse, Joe Max
,
Schleef, Martin
,
Shankar, Ram
in
Alkaline lysis
,
Analysis
,
Applied Microbiology
2021
Background
The use of bovine-origin ribonucleases has been part of the standard protocol for plasmid DNA purification. As the field of gene therapy now enters the clinical stage, such enzymes need to be phased out or alternative purification protocols need to be developed to ensure product safety and regulatory compliance. The recombinant expression of bacterial RNase is fraught with toxicity problems making it a challenging enzyme to express. The current study describes a plasmid construct that allowed expression of barnase in
Escherichia coli
under co-expression of its native inhibitor barstar.
Results
The pure enzyme without the inhibitor barstar was exported to the extracellular space through the periplasm and then purified from the cell-free supernatant. Cation exchange chromatography was employed as a primary purification step. This was followed by hydrophobic interaction chromatography which resulted in a concentrated fraction of active enzyme. Although current levels of volumetric activity achieved are quite meagre (4 Kunitz units mL
− 1
), in principle its application to plasmid DNA purification could be proved. Currently, this is capable of processing small amounts (13 g) of bacterial biomass for plasmid production.
Conclusions
The current work focusses on the downstream purification strategies for a recombinant RNase and sets a framework for higher scale production if specific productivity is increased by optimal hosts and/or re-engineered plasmids. Also important is to curtail the massive enzyme loss during purification by cation exchange chromatography. Application of even a relatively small amount of recombinant RNase would contribute to greatly reducing the initial RNA levels in alkaline lysates thereby augmenting further downstream plasmid purification steps.
Journal Article
Automated, scaled, transposon-based production of CAR T cells
2022
BackgroundThere is an increasing demand for chimeric antigen receptor (CAR) T cell products from patients and care givers. Here, we established an automated manufacturing process for CAR T cells on the CliniMACS Prodigy platform that is scaled to provide therapeutic doses and achieves gene-transfer with virus-free Sleeping Beauty (SB) transposition.MethodsWe used an advanced CliniMACS Prodigy that is connected to an electroporator unit and performed a series of small-scale development and large-scale confirmation runs with primary human T cells. Transposition was accomplished with minicircle (MC) DNA-encoded SB100X transposase and pT2 transposon encoding a CD19 CAR.ResultsWe defined a bi-pulse electroporation shock with bi-directional and unidirectional electric field, respectively, that permitted efficient MC insertion and maintained a high frequency of viable T cells. In three large scale runs, 2E8 T cells were enriched from leukapheresis product, activated, gene-engineered and expanded to yield up to 3.5E9 total T cells/1.4E9 CAR-modified T cells within 12 days (CAR-modified T cells: 28.8%±12.3%). The resulting cell product contained highly pure T cells (97.3±1.6%) with balanced CD4/CD8 ratio and a high frequency of T cells with central memory phenotype (87.5%±10.4%). The transposon copy number was 7.0, 9.4 and 6.8 in runs #1–3, respectively, and gene analyses showed a balanced expression of activation/exhaustion markers. The CD19 CAR T cell product conferred potent anti-lymphoma reactivity in pre-clinical models. Notably, the operator hands-on-time was substantially reduced compared with conventional non-automated CAR T cell manufacturing campaigns.ConclusionsWe report on the first automated transposon-based manufacturing process for CAR T cells that is ready for formal validation and use in clinical manufacturing campaigns. This process and platform have the potential to facilitate access of patients to CAR T cell therapy and to accelerate scaled, multiplexed manufacturing both in the academic and industry setting.
Journal Article
Minicircle and Miniplasmid DNA Vectors
2013
This first title on the topic provides complete coverage, including the molecular basis, production and possible biomedical applications. Written by the most prominent academic researchers in the field as well as by researchers at one of the world's leading companies in industrial production of minicircle DNA, this practical book is aimed at everyone who is directly or indirectly involved in the development of gene therapies.
Development of human targeted extracellular vesicles loaded with shRNA minicircles to prevent parkinsonian pathology
by
Reinares-Sebastian, Alejandro
,
Fernández-Irigoyen, Joaquín
,
Sola, Carlos
in
alpha-Synuclein - metabolism
,
Animals
,
Biomedical and Life Sciences
2025
Background
Neurological disorders are the second leading cause of death and the leading cause of disability in the world
.
Thus, the development of novel disease-modifying strategies is clearly warranted. We have previously developed a therapeutic approach using mouse targeted rabies virus glycoprotein (RVG) extracellular vesicles (EVs) to deliver minicircles (MCs) expressing shRNA (shRNA-MCs) to induce long-term α-synuclein down-regulation. Although the previous therapy successfully reduced the pathology, the clinical translation was extremely unlikely since they were mouse extracellular vesicles.
Methods
To overcome this limitation, we developed a source of human RVG-EVs compatible with a personalized therapy using immature dendritic cells. Human peripheral blood monocytes were differentiated in vitro into immature dendritic cells, which were transfected to express the RVG peptide. RVG-EVs containing shRNA-MCs, loaded by electroporation, were injected intravenously in the α-synuclein performed fibril (PFF) mouse model. Level of α-synuclein, phosphorylated α-synuclein aggregates, dopaminergic neurons and motor function were evaluated 90 days after the treatment. To confirm that EVs derived from patients were suitable as a vehicle, proteomic analysis of EVs derived from control, initial and advanced Parkinson’s disease was performed.
Results
The shRNA-MCs could be successfully loaded into human RVG-EVs and downregulate α-synuclein in SH-SY5Y cells. Intravenous injection of the shRNA-MC-loaded RVG-EVs induced long-term downregulation of α-synuclein mRNA expression and protein level, decreased α-synuclein aggregates, prevented dopaminergic cell death and ameliorated motor impairment in the α-synuclein PFF mouse model. Moreover, we confirmed that the EVs from PD patients are suitable as a personalized therapeutic vehicle.
Conclusion
Our study confirmed the therapeutic potential of shRNA-MCs delivered by human RVG-EVs for long-term treatment of neurodegenerative diseases. These results pave the way for clinical use of this approach.
Journal Article
Self-Complementary Adeno-Associated Virus Vectors Improve Transduction Efficiency of Corneal Endothelial Cells
by
Mueller, Chris
,
Czugala, Marta
,
Kruse, Friedrich E.
in
Allografts
,
Apoptosis
,
Biology and Life Sciences
2016
Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC) are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2) vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss-) DNA vector genome into double-stranded (ds-) DNA. This step can be bypassed by using self-complementary (sc-) AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP) as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV) and 38.0±8.6% (ssAAV) (p<0.001), respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.
Journal Article
Minicircle and miniplasmid DNA vectors: the future of nonviral and viral gene transfer
2013
This first title on the topic provides complete coverage, including the molecular basis, production and possible biomedical applications. Written by the most prominent academic researchers in the field as well as by researchers at one of the world's leading companies in industrial production of minicircle DNA, this practical book is aimed at everyone who is directly or indirectly involved in the development of gene therapies.
DNA Minicircle Technology Improves Purity of Adeno-associated Viral Vector Preparations
by
Schnödt, Maria
,
Espinosa, Laura Escalona
,
Grünert, Anja
in
AAV vectors
,
DNA impurities
,
Minicircle
2016
Adeno-associated viral (AAV) vectors are considered as one of the most promising delivery systems in human gene therapy. In addition, AAV vectors are frequently applied tools in preclinical and basic research. Despite this success, manufacturing pure AAV vector preparations remains a difficult task. While empty capsids can be removed from vector preparations owing to their lower density, state-of-the-art purification strategies as of yet failed to remove antibiotic resistance genes or other plasmid backbone sequences. Here, we report the development of minicircle (MC) constructs to replace AAV vector and helper plasmids for production of both, single-stranded (ss) and self-complementary (sc) AAV vectors. As bacterial backbone sequences are removed during MC production, encapsidation of prokaryotic plasmid backbone sequences is avoided. This is of particular importance for scAAV vector preparations, which contained an unproportionally high amount of plasmid backbone sequences (up to 26.1% versus up to 2.9% (ssAAV)). Replacing standard packaging plasmids by MC constructs not only allowed to reduce these contaminations below quantification limit, but in addition improved transduction efficiencies of scAAV preparations up to 30-fold. Thus, MC technology offers an easy to implement modification of standard AAV packaging protocols that significantly improves the quality of AAV vector preparations.
Journal Article
Effect of the Compaction and the Size of DNA on the Nuclear Transfer Efficiency after Microinjection in Synchronized Cells
by
Schleef, Martin
,
Akita, Hidetaka
,
Kurihara, Dai
in
Communication
,
Deoxyribonucleic acid
,
Drug delivery systems
2015
The nuclear transfer process is one of the critical rate-limiting processes in transgene expression. In the present study, we report on the effect of compaction and the size of the DNA molecule on nuclear transfer efficiency by microinjection. A DNA/protamine complex- or variously-sized naked DNA molecules were injected into the cytoplasm or nucleus of synchronized HeLa cells. To evaluate the nuclear transfer process, a nuclear transfer score (NT score), calculated based on transgene expression after cytoplasmic microinjection divided by that after nuclear microinjection, was employed. The compaction of DNA with protamine decreased the NT score in comparison with the injection of naked DNA when the N/P ratio was increased to >2.0. Moreover, when naked DNA was microinjected, gene expression increased in parallel with the size of the DNA in the following order: minicircle DNA (MC07.CMV-EGFP; 2257 bp) > middle-sized plasmid DNA (pBS-EGFP; 3992 bp) > conventional plasmid DNA (pcDNA3.1-EGFP; 6172 bp), while the level of gene expression was quite comparable among them when the DNAs were injected into the nucleus. The above findings suggest that the intrinsic size of the DNA molecule is a major determinant for nuclear entry and that minicircle DNA has a great advantage in nuclear transfer.
Journal Article