Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Schlegl, Judith"
Sort by:
The target landscape of clinical kinase drugs
Kinase inhibitors are an important class of drugs that block certain enzymes involved in diseases such as cancer and inflammatory disorders. There are hundreds of kinases within the human body, so knowing the kinase “target” of each drug is essential for developing successful treatment strategies. Sometimes clinical trials can fail because drugs bind more than one target. Yet sometimes off-target effects can be beneficial, and drugs can be repurposed for treatment of additional diseases. Klaeger et al. performed a comprehensive analysis of 243 kinase inhibitors that are either approved for use or in clinical trials. They provide an open-access resource of target summaries that could help researchers develop better drugs, understand how existing drugs work, and design more effective clinical trials. Science , this issue p. eaan4368 The druggable kinome is unraveled. Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the “druggable” kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD–positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Mass-spectrometry-based draft of the human proteome
Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns and post-translational modifications, all of which carry biological information that is not accessible by genomics or transcriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance, in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology. A mass-spectrometry-based draft of the human proteome and a public database for analysis of proteome data are presented; assembled information is used to estimate the size of the protein-coding genome, to identify organ-specific proteins, proteins predicting drug resistance or sensitivity, and many translated long intergenic non-coding RNAs, and to reveal conserved control of protein abundance. Mapping the human proteome More than a decade after publication of the draft human genome sequence, there is no direct equivalent for the human proteome. But in this issue of Nature two groups present mass spectrometry-based analysis of human tissues, body fluids and cells mapping the large majority of the human proteome. Akhilesh Pandey and colleagues identified 17,294 protein-coding genes and provide evidence of tissue- and cell-restricted proteins through expression profiling. They highlight the importance of proteogenomic analysis by identifying translated proteins from annotated pseudogenes, non-coding RNAs and untranslated regions. The data set is available on http://www.humanproteomemap.org . Bernhard Kuster and colleagues have assembled protein evidence for 18,097 genes in ProteomicsDB (available on https://www.proteomicsdb.org ) and highlight the utility of the data, for example the identification of hundreds of translated lincRNAs, drug-sensitivity markers and discovering the quantitative relationship between mRNA and protein levels in tissues. Elsewhere in this issue, Vivien Marx reports on a third major proteomics project, the antibody-based Human Protein Atlas programme ( http://www.proteinatlas.org/ ).
Building ProteomeTools based on a complete synthetic human proteome
The ProteomeTools project provides the proteomics community with a physical synthetic tryptic peptide resource and a digital LC-MS/MS data resource covering all human proteins. We describe ProteomeTools, a project building molecular and digital tools from the human proteome to facilitate biomedical research. Here we report the generation and multimodal liquid chromatography–tandem mass spectrometry analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products, and we exemplify the utility of these data in several applications. The resource (available at http://www.proteometools.org ) will be extended to >1 million peptides, and all data will be shared with the community via ProteomicsDB and ProteomeXchange.
Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes
Bantscheff et al . use chemoproteomics to measure the affinity of small molecules for megadalton protein complexes in cell extracts. Differences in the selectivity of HDAC inhibitors observed when native HDAC complexes are compared with their purified catalytic subunits suggest the limitations of using isolated recombinant proteins in certain drug screens. The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.
Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling
The stability of the Wnt pathway transcription factor β-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits β-catenin-mediated transcription. XAV939 stimulates β-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies. Target for Wnt inhibitors Deregulation of the Wnt pathway, a signalling system involved in embryogenesis and in many other processes in living cells, has been implicated in many cancers, making it an attractive target for anticancer therapies. But while inhibitors of Notch and Hedgehog pathways have reached the clinical trial stage, 'drugable' targets for Wnt inhibitors have proved elusive. Now, using a chemical genetics approach, a small molecule inhibitor of the Wnt pathway has been identified and its direct target and mechanism of action characterized. XAV939 inhibits Wnt signalling with high specificity via the stabilization of axin, a concentration-limiting factor of the β-catenin degradation complex. As well as suggesting new drug targets, this work provides insights into how the Wnt pathway is physiologically regulated. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. Here, a small molecule inhibitor of the Wnt pathway is identified and its direct target and mechanism of action are characterized, providing new insights into the physiological regulation of the Wnt pathway and new possibilities for targeted Wnt pathway therapeutics.
A physical and functional map of the human TNF-α/NF-κB signal transduction pathway
Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-α triggers a signalling cascade, converging on the activation of the transcription factor NF-κB, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-α/NF-κB pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-α/NF-κB pathway and is generally applicable to other pathways relevant to human disease.
Mass-spectrometry-based draft of the human proteome
Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns and post-translational modifications, all of which carry biological information that is not accessible by genomics or transcriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance, in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology.
Precursor of C4 Antisense RNA of Bacteriophages P1 and P7 is a Substrate for RNase P of Escherichia coli
The C4 repressor of the temperate bacteriophages P1 and P7 inhibits antirepressor (Ant) synthesis and is essential for establishment and maintenance of lysogeny. C4 is an antisense RNA acting on a target, Ant mRNA, which is transcribed from the same promoter. The antisense-target RNA interaction requires processing of C4 RNA from a precursor RNA. Here we show that 5' maturation of C4 RNA in vivo depends on RNase P. In vitro, Escherichia coli RNase P and its catalytic RNA subunit (M1 RNA) can generate the mature 5' end of C4 RNA from P1 by a single endonucleolytic cut, whereas RNase P from the E. coli rnpA49 mutant, carrying a missense mutation in the RNase P protein subunit, is defective in the 5' maturation of C4 RNA. Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature. Instead, C4 RNA molecules carrying up to five extra nucleotides beyond the 5' end accumulated. The same phenotype was observed in rnpA+bacteria which harbored a plasmid carrying a P7 c4 mutant gene with a single C → G base substitution in the structural homologue to the CCA 3' end of tRNAs. Implications of C4 RNA processing for the lysis/lysogeny decision process of bacteriophages P1 and P7 are discussed.