Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Schmera, Dénes"
Sort by:
A new conceptual and methodological framework for exploring and explaining pattern in presence - absence data
A conceptual framework is proposed to evaluate the relative importance of beta diversity, nestedness and agreement in species richness in presence—absence data matrices via partitioning pairwise gamma diversity into additive components. This is achieved by calculating three complementary indices that measure similarity, relative species replacement, and relative richness difference for all pairs of sites, and by displaying the results in a two-dimensional simplex diagram, or ternary plot. By summing two terms at a time, three one-dimensional simplices are derived correspondig to different contrasts: beta diversity versus similarity, species replacement versus nestedness and, finally, richness difference versus richness agreement. The simplex diagrams can be used to interpret underlying data structures by showing departure from randomness towards well-interpretable directions, as demonstrated by artificial and actual examples. In particular, one may appreciate how far data structure deviates from three extreme model situations: perfect nestedness, anti-nestedness and perfect gradient. Throughout the paper, we pay special attention to the measurement and interpetation of beta diversity and nestedness for pairs of sites, because these concepts have been in focus of ecological reseach for decades. The novel method can be used in community ecology, conservation biology, and biogeography, whenever the objective is to recover explanatory ecological processes behind patterns conveyed by presence-absence data.
Characterising functional strategies and trait space of freshwater macroinvertebrates
We examined the functional strategies and the trait space of 596 European taxa of freshwater macroinvertebrates characterized by 63 fuzzy coded traits belonging to 11 trait groups. Principal component analysis was used to reduce trait dimensionality, to explain ecological strategies, and to quantify the trait space occupied by taxa. Null models were used to compare observed occupancy with theoretical models, and randomization-based analyses were performed to test whether taxonomic relatedness, a proxy of phylogenetic signal, constrains the functional trait space of freshwater macroinvertebrates. We identified four major strategies along which functional traits of the taxa examined show trade-offs. In agreement with expectations and in contrast to existing evidence we found that life cycles and aquatic strategies are important in shaping functional structure of freshwater macroinvertebrates. Our results showed that the taxonomic groups examined fill remarkably different niches in the functional trait space. We found that the functional trait space of freshwater macroinvertebrates is reduced compared to the range of possibilities that would exist if traits varied independently. The observed decrease was between 23.44 and 44.61% depending on the formulation of the null expectations. We demonstrated also that taxonomic relatedness constrains the functional trait space of macroinvertebrates.
Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research
Although several studies have examined the functional diversity of freshwater macroinvertebrates, the variety of methodologies combined with the absence of a synthetic review make our understanding of this field incomplete. Therefore, we reviewed the current methodology for assessing functional diversity in freshwater macroinvertebrate research. Our review showed that most papers quantified functional diversity using biological traits, among which feeding habits were the most common traits probably due to the assumed links between feeding and ecosystem functions. A large number of diversity measures have been applied for quantifying functional diversity of freshwater macroinvertebrate assemblages, among which Rao’s quadratic entropy looks like the most frequent. In most papers, functional diversity was positively related to taxon richness, and functional redundancy was a key concept in explaining this correlation. Most studies detected strong influence of the environmental factors as well as human impact on functional diversity. Finally, our review revealed that functional diversity research is biased towards European running waters and is hindered by yet insufficient information on the autecology of macroinvertebrates.
The type of forest edge shapes snail assemblages at forest–pasture transitions
Semi-natural, nutrient-poor calcareous grasslands are local biodiversity hotspots that are increasingly threatened by land use intensification, abandonment, or indirect effects from adjacent habitats. The habitat quality of these grasslands is often influenced by neighbouring forests or intensively managed agricultural land. For example, shrubs encroaching on grassland reduce the sensitive habitat, but at the same time represent a new habitat type (transition zone at gradual forest edge). We investigated the effects of gradual and abrupt forest edges on the species richness, abundance, species composition, functional diversity and number of species of conservation importance (red-listed species) of land snail assemblages at forest–pasture transitions in the Jura Mountains, Switzerland. Forest edge type influenced the snail assemblages in different ways. Transition zones at abrupt forest edges had a higher species richness and more snail individuals than transition zones at gradual forest edges. Transition zones also differed in land snail species composition. At gradual forest edges, the transition zones contained some openland snail species, while those at abrupt forest edges had a similar species composition to the forest interior. Functional diversity was significantly higher for snails in the forests and transition zones at both abrupt and gradual edges than in pastures. In contrast, pastures and transition zones at both abrupt and gradual edges had a significantly higher number of red-listed snail species. Based on our findings, we recommend the creation of gradual forest edges through regular forest management practices, rather than through shrub encroachment into pasture, which could reduce the size of the threatened habitat.
Components of functional diversity revisited: A new classification and its theoretical and practical implications
Functional diversity is regarded as a key concept for understanding the link between ecosystem function and biodiversity. The different and ecologically well‐defined aspects of the concept are reflected by the so‐called functional components , for example, functional richness and divergence. Many authors proposed that components be distinguished according to the multivariate technique on which they rely, but more recent studies suggest that several multivariate techniques, providing different functional representations (such as dendrograms and ordinations) of the community can in fact express the same functional component. Here, we review the relevant literature and find that (1) general ecological acceptance of the field is hampered by ambiguous terminology and (2) our understanding of the role of multivariate techniques in defining components is unclear. To address these issues, we provide new definitions for the three basic functional diversity components namely functional richness, functional divergence and functional regularity. In addition, we present a classification of presence‐/absence‐based approaches suitable for quantifying these components. We focus exclusively on the binary case for its relative simplicity. We find illogical, as well as logical but unused combinations of components and representations; and reveal that components can be quantified almost independently from the functional representation of the community. Finally, theoretical and practical implications of the new classification are discussed.
Correlating variables with different scale types: A new framework based on matrix comparisons
Ecological variables may be expressed on four basic measurement scales (nominal, ordinal, interval or ratio), whereas circular variables and those combining a nominal state with other scale types are also common. However, existing methods are not suited to calculate correlations between all pairwise combinations of such variables, preventing the application of standard multivariate techniques. The essence of the new approach is to derive a so‐called difference semimatrix for all pairs of observations for each variable, and then to calculate the matrix correlation based on two such semimatrices. The advantage of this function, termed d‐correlation, is that comparisons are made on the same logical basis regardless of the measurement scale, allowing for the use of principal components analysis to visualize interrelationships among many variables simultaneously. Further advantages are that missing values in the data are tolerated and that the Gower index of dissimilarity between objects may also be computed. The use of the method is demonstrated on a small toy matrix, an artificial plant trait matrix and a large dataset summarizing ecological features of all vascular plant species of Sardinia, Italy. The source code in R and FORTRAN, and applications for three different operation systems, are provided for computations with results serving as input for other statistical software. The new computational framework will allow the comparison of any types of ecological traits in a mathematically meaningful manner. This option was not available earlier in the field of multivariate statistics, and the method is expected to receive applications in other subject areas as well in which many objects are described in terms of variables expressed on different measurement scales.
The ternary diagram of functional diversity
Among the many diversity indices in the ecologist toolbox, measures that can be partitioned into additive terms are particularly useful as the different components can be related to different ecological processes shaping community structure. In this paper, an additive diversity decomposition is proposed to partition the diversity structure of a given community into three complementary fractions: functional diversity, functional redundancy and species dominance. These three components sum up to one. Therefore, they can be used to portray the community structure in a ternary diagram. Since the identification of community‐level patterns is an essential step to investigate the main drivers of species coexistence, the ternary diagram of functional diversity can be used to relate different facets of diversity to community assembly processes more exhaustively than looking only at one index at a time. The value of the proposed diversity decomposition is demonstrated by the analysis of actual abundance data on plant assemblages sampled in grazed and ungrazed grasslands in Tuscany (Central Italy).
Road crossings change functional diversity and trait composition of stream-dwelling macroinvertebrate assemblages
Functional diversity is regarded as a key concept in understanding the link between ecosystem function and biodiversity, and is therefore widely investigated in relation to human-induced impacts. However, information on how the intersection of roads and streams (hereafter road crossings, representing a widespread habitat transformation in relation to human development), influences the functional diversity of stream-dwelling macroinvertebrates is still missing. The general aim of our study was to provide a comprehensible picture on the impacts of road crossing structures on multiple facets of the functional diversity of stream-dwelling macroinvertebrates. In addition, we also investigated changes in trait structure. Our research showed that road crossing structures had negative impacts on functional richness and dispersion; i.e., functional diversification. However, we found no significant impact on functional divergence and evenness components. We found a decrease in functional redundancy at road crossing structures. This indicates a reduced ability of the community to recover from disturbances. Finally, we found that road crossings drive stream habitat and hydrological changes in parallel with modification of the trait composition of stream-dwelling macroinvertebrate assemblages. All these results suggest that road crossings cause notable changes in the functional diversity of stream-dwelling macroinvertebrate assemblages.
Resilience of spider communities affected by a range of silvicultural treatments in a temperate deciduous forest stand
To secure the ecosystem services forests provide, it is important to understand how different management practices impact various components of these ecosystems. We aimed to uncover how silvicultural treatments affected the ground-dwelling spider communities during the first five years of a forest ecological experiment. In an oak-hornbeam forest stand, five treatments, belonging to clear-cutting, shelterwood and continuous cover forestry systems, were implemented using randomised complete block design. Spiders were sampled by pitfall traps, and detailed vegetation, soil and microclimate data were collected throughout the experiment. In the treatment plots spider abundance and species richness increased marginally. Species composition changes were more pronounced and treatment specific, initially diverging from the control plots, but becoming more similar again by the fifth year. These changes were correlated mostly to treatment-related light intensity and humidity gradients. The patchy implementation of the treatments induced modest increase in both gamma and beta diversity of spiders in the stand. Overall, spiders gave a prompt and species specific response to treatments that was by the fifth year showing signs of relatively quick recovery to pre-treatment state. At the present fine scale of implementation the magnitude of changes was not different among forestry treatments, irrespective of their severity.