Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
952 result(s) for "Schmid, Markus"
Sort by:
Regulation of flowering time: all roads lead to Rome
Plants undergo a major physiological change as they transition from vegetative growth to reproductive development. This transition is a result of responses to various endogenous and exogenous signals that later integrate to result in flowering. Five genetically defined pathways have been identified that control flowering. The vernalization pathway refers to the acceleration of flowering on exposure to a long period of cold. The photoperiod pathway refers to regulation of flowering in response to day length and quality of light perceived. The gibberellin pathway refers to the requirement of gibberellic acid for normal flowering patterns. The autonomous pathway refers to endogenous regulators that are independent of the photoperiod and gibberellin pathways. Most recently, an endogenous pathway that adds plant age to the control of flowering time has been described. The molecular mechanisms of these pathways have been studied extensively in Arabidopsis thaliana and several other flowering plants.
Intelligent Packaging in the Food Sector: A Brief Overview
The trend towards sustainability, improved product safety, and high-quality standards are important in all areas of life sciences. In order to satisfy these requirements, intelligent packaging is used in the food sector. These systems can monitor permanently the quality status of a product and share the information with the customer. In this way, food waste can be reduced and customer satisfaction can be optimized. Depending on the product, different types of intelligent packaging technologies are used and discussed in this review. The three main groups are: data carriers, indicators, and sensors. At this time, they are not that widespread, but their potential is already known. In which areas intelligent packaging should be implemented, how the systems work, and which values they offer are dealt in this review.
Alginate-Based Edible Films and Coatings for Food Packaging Applications
Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily.
Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review
Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films.
Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana
FLOWERING LOCUS M (FLM), a component of the thermosensory flowering time pathway in Arabidopsis thaliana, is regulated by temperature-dependent alternative splicing (AS). The main splicing variant, FLM-β, is a well-documented floral repressor that is down-regulated in response to increasing ambient growth temperature. Two hypotheses have been formulated to explain how flowering time is modulated by AS of FLM. In the first model a second splice variant, FLM-δ, acts as a dominant negative isoform that competes with FLM-β at elevated ambient temperatures, thereby indirectly promoting flowering. Alternatively, it has been suggested that the induction of flowering at elevated temperatures is caused only by reduced FLM-β expression. To better understand the role of the two FLM splice forms, we employed CRISPR/Cas9 technology to specifically delete the exons that characterize each splice variant. Lines that produced repressive FLM-β but were incapable of producing FLM-δ were late flowering. In contrast, FLM-β knockout lines that still produced FLM-δ flowered early, but not earlier than the flm-3 loss of function mutant, as would be expected if FLM-δ had a dominant-negative effect on flowering. Our data support the role of FLM-β as a flower repressor and provide evidence that a contribution of FLM-δ to the regulation of flowering time in wild-type A. thaliana seems unlikely.
Tracking heavy water (D₂O) incorporation for identifying and sorting active microbial cells
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D ₂O) combined with Raman microspectroscopy. Incorporation of D ₂O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D ₂O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D ₂O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. Significance Measuring activity patterns of microbes in their natural environment is essential for understanding ecosystems and the multifaceted interactions of microorganisms with eukaryotes. In this study, we developed a technique that allows fast and nondestructive activity measurements of microbial communities on a single-cell level. Microbial communities were amended with heavy water (D ₂O), a treatment that does not change the available substrate pool. After incubation, physiologically active cells are rapidly identified with Raman microspectroscopy by measuring cellular D incorporation. Using this approach, we characterized the activity patterns of two dominant microbes in mouse cecum samples amended with different carbohydrates and discovered previously unidentified bacteria stimulated by mucin and/or glucosamine by combining Raman microspectroscopy and optical tweezer-based sorting.
Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING-LIKE Transcription Factors
Gibberellin (GA), a diterpene hormone, plays diverse roles in plant growth and development, including seed germination, stem elongation, and flowering time. Although it is known that GA accelerates flowering through degradation of transcription repressors, DELLAs, the underlying mechanism is poorly understood. We show here that DELLA directly binds to microRNA156 (miR156)-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors, which promote flowering by activating miR172 and MADS box genes. The interaction between DELLA and SPL interferes with SPL transcriptional activity and consequently delays floral transition through inactivating miR172 in leaves and MADS box genes at shoot apex under long-day conditions or through repressing MADS box genes at the shoot apex under short-day conditions. Our results elucidate the molecular mechanism by which GA controls flowering and provide the missing link between DELLA and MADS box genes.
CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants
Programmable gene regulators that can modulate the activity of selected targets in trans are a useful tool for probing and manipulating gene function. CRISPR technology provides a convenient method for gene targeting that can also be adapted for multiplexing and other modifications to enable strong regulation by a range of different effectors. We generated a vector toolbox for CRISPR/dCas9-based targeted gene regulation in plants, modified with the previously described MS2 system to amplify the strength of regulation, and using Golden Gate-based cloning to enable rapid vector assembly with a high degree of flexibility in the choice of promoters, effectors and targets. We tested the system using the floral regulator FLOWERING LOCUS T (FT) as a target and a range of different effector domains including the transcriptional activator VP64, the H3K27 acetyltransferase p300 and the H3K9 methyltransferase KRYPTONITE. When transformed into Arabidopsis thaliana, several of the constructs caused altered flowering time phenotypes that were associated with changes in FT expression and/or epigenetic status, thus demonstrating the effectiveness of the system. The MS2-CRISPR/dCas9 system can be used to modulate transcriptional activity and epigenetic status of specific target genes in plants, and provides a versatile tool that can easily be used with different targets and types of regulation for a range of applications.
Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH
Enhanced biological phosphorus removal (EBPR) is a globally important biotechnological process and relies on the massive accumulation of phosphate within special microorganisms. Candidatus Accumulibacter conform to the classical physiology model for polyphosphate accumulating organisms and are widely believed to be the most important player for the process in full-scale EBPR systems. However, it was impossible till now to quantify the contribution of specific microbial clades to EBPR. In this study, we have developed a new tool to directly link the identity of microbial cells to the absolute quantification of intracellular poly-P and other polymers under in situ conditions, and applied it to eight full-scale EBPR plants. Besides Ca . Accumulibacter, members of the genus Tetrasphaera were found to be important microbes for P accumulation, and in six plants they were the most important. As these Tetrasphaera cells did not exhibit the classical phenotype of poly-P accumulating microbes, our entire understanding of the microbiology of the EBPR process has to be revised. Furthermore, our new single-cell approach can now also be applied to quantify storage polymer dynamics in individual populations in situ in other ecosystems and might become a valuable tool for many environmental microbiologists.
Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability
Environmental impacts and consumer concerns have necessitated the study of bio-based materials as alternatives to petrochemicals for packaging applications. The purpose of this review is to summarize synthetic and non-synthetic materials feasible for packaging and textile applications, routes of upscaling, (industrial) applications, evaluation of sustainability, and end-of-life options. The outlined bio-based materials include polylactic acid, polyethylene furanoate, polybutylene succinate, and non-synthetically produced polymers such as polyhydrodyalkanoate, cellulose, starch, proteins, lipids, and waxes. Further emphasis is placed on modification techniques (coating and surface modification), biocomposites, multilayers, and additives used to adjust properties especially for barriers to gas and moisture and to tune their biodegradability. Overall, this review provides a holistic view of bio-based packaging material including processing, and an evaluation of the sustainability of and options for recycling. Thus, this review contributes to increasing the knowledge of available sustainable bio-based packaging material and enhancing the transfer of scientific results into applications.