Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,958 result(s) for "Schmitz, M"
Sort by:
Raman spectroscopy as probe of nanometre-scale strain variations in graphene
Confocal Raman spectroscopy has emerged as a major, versatile workhorse for the non-invasive characterization of graphene. Although it is successfully used to determine the number of layers, the quality of edges, and the effects of strain, doping and disorder, the nature of the experimentally observed broadening of the most prominent Raman 2D line has remained unclear. Here we show that the observed 2D line width contains valuable information on strain variations in graphene on length scales far below the laser spot size, that is, on the nanometre-scale. This finding is highly relevant as it has been shown recently that such nanometre-scaled strain variations limit the carrier mobility in high-quality graphene devices. Consequently, the 2D line width is a good and easily accessible quantity for classifying the crystalline quality, nanometre-scale flatness as well as local electronic properties of graphene, all important for future scientific and industrial applications. Raman spectroscopy has become an invaluable tool for graphene characterisation, yet the nature of the broadening of the Raman 2D line remains unclear. Here, Stampfer et al . show that the Raman 2D line width is a measure of nanometre-scale strain variations in graphene on insulating substrates.
A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival
The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin–Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.
TMDlib2 and TMDplotter: a platform for 3D hadron structure studies
A common library, TMDlib2, for Transverse-Momentum-Dependent distributions (TMDs) and unintegrated parton distributions (uPDFs) is described, which allows for easy access of commonly used TMDs and uPDFs, providing a three-dimensional (3D) picture of the partonic structure of hadrons. The tool TMDplotter allows for web-based plotting of distributions implemented in TMDlib2, together with collinear pdfs as available in LHAPDF.
Multi-level inhibition of coronavirus replication by chemical ER stress
Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs. Here, Shaban et al. show that coronaviruses modulate ER stress and the unfolded protein response. The ER stress inducer thapsigargin exerts potent antiviral effects, partially reverses the virus-induced translational shut-down, reprograms the host proteome and suppresses autophagic flux, thereby inhibiting coronavirus replication at multiple levels.
SIAH2-mediated and organ-specific restriction of HO-1 expression by a dual mechanism
The intracellular levels of the cytoprotective enzyme heme oxygenase-1 (HO-1) are tightly controlled. Here, we reveal a novel mechanism preventing the exaggerated expression of HO-1. The analysis of mice with a knock-out in the ubiquitin E3 ligase seven in absentia homolog 2 (SIAH2) showed elevated HO-1 protein levels in specific organs such as heart, kidney and skeletal muscle. Increased HO-1 protein amounts were also seen in human cells deleted for the SIAH2 gene. The higher HO-1 levels are not only due to an increased protein stability but also to elevated expression of the HO-1 encoding HMOX1 gene, which depends on the transcription factor nuclear factor E2-related factor 2 (NRF2), a known SIAH2 target. Dependent on its RING (really interesting new gene) domain, expression of SIAH2 mediates proteasome-dependent degradation of its interaction partner HO-1. Additionally SIAH2 -deficient cells are also characterized by reduced expression levels of glutathione peroxidase 4 (GPX4), rendering the knock-out cells more sensitive to ferroptosis.
Monitoring the Levels of Cellular NF-κB Activation States
The NF-κB signaling system plays an important regulatory role in the control of many biological processes. The activities of NF-κB signaling networks and the expression of their target genes are frequently elevated in pathophysiological situations including inflammation, infection, and cancer. In these conditions, the outcome of NF-κB activity can vary according to (i) differential activation states, (ii) the pattern of genomic recruitment of the NF-κB subunits, and (iii) cellular heterogeneity. Additionally, the cytosolic NF-κB activation steps leading to the liberation of DNA-binding dimers need to be distinguished from the less understood nuclear pathways that are ultimately responsible for NF-κB target gene specificity. This raises the need to more precisely determine the NF-κB activation status not only for the purpose of basic research, but also in (future) clinical applications. Here we review a compendium of different methods that have been developed to assess the NF-κB activation status in vitro and in vivo. We also discuss recent advances that allow the assessment of several NF-κB features simultaneously at the single cell level.
SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies
Promyelocytic leukemia nuclear bodies (PML-NBs) are PML-based nuclear structures that regulate various cellular processes. SUMOylation, the process of covalently conjugating small ubiquitin-like modifiers (SUMOs), is required for both the formation and the disruption of PML-NBs. However, detailed mechanisms of how SUMOylation regulates these processes remain unknown. Here we report that SUMO5, a novel SUMO variant, mediates the growth and disruption of PML-NBs. PolySUMO5 conjugation of PML at lysine 160 facilitates recruitment of PML-NB components, which enlarges PML-NBs. SUMO5 also increases polySUMO2/3 conjugation of PML, resulting in RNF4-mediated disruption of PML-NBs. The acute promyelocytic leukemia oncoprotein PML-RARα blocks SUMO5 conjugation of PML, causing cytoplasmic displacement of PML and disruption of PML-NBs. Our work not only identifies a new member of the SUMO family but also reveals the mechanistic basis of the PML-NB life cycle in human cells.
The transverse momentum spectrum of low mass Drell–Yan production at next-to-leading order in the parton branching method
It has been observed in the literature that measurements of low-mass Drell–Yan (DY) transverse momentum spectra at low center-of-mass energies s are not well described by perturbative QCD calculations in collinear factorization in the region where transverse momenta are comparable with the DY mass. We examine this issue from the standpoint of the Parton Branching (PB) method, combining next-to-leading-order (NLO) calculations of the hard process with the evolution of transverse momentum dependent (TMD) parton distributions. We compare our predictions with experimental measurements at low DY mass, and find very good agreement. In addition we use the low mass DY measurements at low s to determine the width q s of the intrinsic Gauss distribution of the PB-TMDs at low evolution scales. We find values close to what has earlier been used in applications of PB-TMDs to high-energy processes at the Large Hadron Collider (LHC) and HERA. We find that at low DY mass and low s even in the region of p T / m DY ∼ 1 the contribution of multiple soft gluon emissions (included in the PB-TMDs) is essential to describe the measurements, while at larger masses ( m DY ∼ m Z ) and LHC energies the contribution from soft gluons in the region of p T / m DY ∼ 1 is small.
Generation of a Gluconobacter oxydans knockout collection for improved extraction of rare earth elements
Bioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans , offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency. Bioleaching of rare earth elements using microorganisms offers an environmentally friendly alternative to thermochemical extraction. Here, Schmitz et al. generate a whole-genome knockout collection of mutants for one such microorganism, Gluconobacter oxydans , and identify genes affecting the production of acidic biolixiviant and thus bioleaching efficacy.