Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
932 result(s) for "Schneider, Jonathan"
Sort by:
Anomalous frozen evanescent phonons
Evanescent Bloch waves are eigensolutions of spatially periodic problems for complex-valued wavenumbers at finite frequencies, corresponding to solutions that oscillate in time and space and that exponentially decay in space. Such evanescent waves are ubiquitous in optics, plasmonics, elasticity, and acoustics. In the limit of zero frequency, the wave “freezes” in time. We introduce frozen evanescent waves as the eigensolutions of the Bloch periodic problem at zero eigenfrequency. Elastic waves, i.e., phonons, in metamaterials serve as an example. We show that, in the complex plane, the Cauchy-Riemann equations for analytical functions connect the minima of the phonon band structure to frozen evanescent phonons. Their exponential decay length becomes unusually large if a minimum in the band structure tends to zero and thereby approaches a soft mode. This connection between unusual static and dynamic behaviors allows to engineer large characteristic decay lengths in static elasticity. For finite-size samples, the static solutions for given boundary conditions are linear combinations of frozen evanescent phonons, leading to interference effects. Theory and experiment are in excellent agreement. Anomalous behavior includes the violation of Saint Venant’s principle, which means that large decay-length frozen evanescent phonons can potentially be applied in terms of remote mechanical sensing. The authors introduce frozen evanescent waves as the Bloch eigenmodes of periodic problems at zero frequency. Elastic waves serve as an example. Under special conditions, the decay length of the frozen evanescent phonons can become anomalously large.
Large characteristic lengths in 3D chiral elastic metamaterials
Three-dimensional (3D) chiral mechanical metamaterials enable behaviors not accessible in ordinary materials. In particular, a coupling between displacements and rotations can occur, which is symmetry-forbidden without chirality. In this work, we solve three open challenges of chiral metamaterials. First, we provide a simple analytical model, which we use to rationalize the design of the chiral characteristic length. Second, using rapid multi-photon multi-focus 3D laser microprinting, we manufacture samples with more than 10 5 micrometer-sized 3D chiral unit cells. This number surpasses previous work by more than two orders of magnitude. Third, using analytical and numerical modeling, we realize chiral characteristic lengths of the order of ten unit cells, changing the sample-size dependence qualitatively and quantitatively. In the small-sample limit, the twist per axial strain is initially proportional to the sample side length, reaching a maximum at the characteristic length. In the thermodynamic limit, the twist per axial strain is proportional to the square of the characteristic length. We show that chiral micropolar continuum elasticity can reproduce this behavior. Chiral mechanical metamaterials enable unusual effects, such as coupling between strain and twist. Here, manufactured microstructured samples with >10 5 chiral unit cells exhibit large characteristic lengths, in agreement with analytical and numerical modelling and micropolar continuum elasticity.
Molecular-scale visualization of sarcomere contraction within native cardiomyocytes
Sarcomeres, the basic contractile units of striated muscle, produce the forces driving muscular contraction through cross-bridge interactions between actin-containing thin filaments and myosin II-based thick filaments. Until now, direct visualization of the molecular architecture underlying sarcomere contractility has remained elusive. Here, we use in situ cryo-electron tomography to unveil sarcomere contraction in frozen-hydrated neonatal rat cardiomyocytes. We show that the hexagonal lattice of the thick filaments is already established at the neonatal stage, with an excess of thin filaments outside the trigonal positions. Structural assessment of actin polarity by subtomogram averaging reveals that thin filaments in the fully activated state form overlapping arrays of opposite polarity in the center of the sarcomere. Our approach provides direct evidence for thin filament sliding during muscle contraction and may serve as a basis for structural understanding of thin filament activation and actomyosin interactions inside unperturbed cellular environments. Sarcomeres, the building blocks of striated muscles, comprise ordered actomyosin arrays involved in force production. Here, the authors visualize sarcomere organization in neonatal cardiomyocytes with in situ cryo-electron tomography, revealing a reduced order of the thin filaments, their sliding and functional states enabling contraction.
Can Drosophila melanogaster tell who’s who?
Drosophila melanogaster are known to live in a social but cryptic world of touch and odours, but the extent to which they can perceive and integrate static visual information is a hotly debated topic. Some researchers fixate on the limited resolution of D. melanogaster's optics, others on their seemingly identical appearance; yet there is evidence of individual recognition and surprising visual learning in flies. Here, we apply machine learning and show that individual D. melanogaster are visually distinct. We also use the striking similarity of Drosophila's visual system to current convolutional neural networks to theoretically investigate D. melanogaster's capacity for visual understanding. We find that, despite their limited optical resolution, D. melanogaster's neuronal architecture has the capability to extract and encode a rich feature set that allows flies to re-identify individual conspecifics with surprising accuracy. These experiments provide a proof of principle that Drosophila inhabit a much more complex visual world than previously appreciated.
Elasticity of podosome actin networks produces nanonewton protrusive forces
Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells. Actin filaments generate force in diverse contexts, although how they can produce nanonewtons of force is unclear. Here, the authors apply cryo-electron tomography, quantitative analysis, and modelling to reveal the podosome core is a dense, spring-loaded, actin network storing elastic energy.
The gene “degrees of kevin bacon” (dokb) regulates a social network behaviour in Drosophila melanogaster
Social networks are a mathematical representation of interactions among individuals which are prevalent across various animal species. Studies of human populations have shown the breadth of what can spread throughout a social network: obesity, smoking cessation, happiness, drug use and divorce. ‘Betweenness centrality’ is a key property of social networks that indicates an individual’s importance in facilitating communication and cohesion within the network. Heritability of betweenness centrality has been suggested in several species, however the genetic regulation of this property remains enigmatic. Here, we demonstrate that the gene CG14109 , referred to as degrees of kevin bacon ( dokb ), influences betweenness centrality in Drosophila melanogaster . We identify strain-specific alleles of dokb with distinct amino acid sequences and when the dokb allele is exchanged between strains, flies exhibit the betweenness centrality pattern dictated by the donor allele. By inserting a GAL4 reporter into the dokb locus, we confirm that dokb is expressed in the central nervous system. These findings define a novel genetic entry point to study social network structure and thereby establish gene-to-social structure relationships. While dokb sequence homology is exclusive to Diptera, we anticipate that dokb -associated molecular pathways could unveil convergent neural mechanisms of social behaviour that apply in diverse animal species. The structure of a social network is thought to be heritable in many animals, including humans. Here, Rooke and colleagues identify a gene, which they name “ degrees of kevin bacon ( dokb )”, that is expressed in the central nervous system of Drosophila melanogaster and regulates the structure of social networks.
Social structures depend on innate determinants and chemosensory processing in Drosophila
Flies display transient social interactions in groups. However, whether fly–fly interactions are stochastic or structured remains unknown. We hypothesized that groups of flies exhibit patterns of social dynamics that would manifest as nonrandom social interaction networks. To test this, we applied a machine vision system to track the position and orientation of flies in an arena and designed a classifier to detect interactions between pairs of flies. We show that the vinegar fly, Drosophila melanogaster , forms nonrandom social interaction networks, distinct from virtual network controls (constructed from the intersections of individual locomotor trajectories). In addition, the formation of interaction networks depends on chemosensory cues. Gustatory mutants form networks that cannot be distinguished from their virtual network controls. Olfactory mutants form networks that are greatly disrupted compared with control flies. Different wild-type strains form social interaction networks with quantitatively different properties, suggesting that the genes that influence this network phenotype vary across and within wild-type populations. We have established a paradigm for studying social behaviors at a group level in Drosophila and expect that a genetic dissection of this phenomenon will identify conserved molecular mechanisms of social organization in other species.
Crosslinking by ZapD drives the assembly of short FtsZ filaments into toroidal structures in solution
Cell division in Escherichia coli relies on the Z ring, a cytoskeletal structure that acts as a scaffold for the assembly of the divisome. To date, the detailed mechanisms underlying the assembly and stabilization of the Z ring remain elusive. This study highlights the role of the FtsZ-associated protein (Zap) ZapD in the assembly and stabilization of Z-ring-like structures via filament crosslinking. Using cryo-electron tomography and biochemical analysis, we show that, at equimolar concentrations of ZapD and FtsZ, ZapD induces the formation of toroidal structures composed of short, curved FtsZ filaments that are crosslinked vertically, but also laterally and diagonally. At higher concentrations of ZapD, regularly spaced ZapD dimers crosslink FtsZ filaments from above, resulting in the formation of straight bundles. Despite the simplicity of this reconstituted system, these findings provide valuable insights into the structural organization and stabilization of the Z ring by Zap proteins in bacterial cells, revealing the key role of optimal crosslinking density and geometry in enabling filament curvature and ring formation.
Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries
Highly porous carbon–carbon composite electrodes for the implementation in redox flow battery systems have been synthesized by a novel soft-templating approach. A PAN-based carbon felt was embedded into a solution containing a phenolic resin, a nitrogen source (pyrrole-2-carboxaldehyde) and a sulfur source (2-thiophenecarboxaldehyde), as well as a triblock copolymer (Pluronic ® F-127) acting as the structure-directing agent. By this strategy, highly porous carbon phase co-doped with nitrogen and sulfur was obtained inside the macroporous carbon felt. For the investigation of electrode structure and porosity X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and nitrogen sorption (BET) were used. The electrochemical performance of the carbon felts was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The N- and S-doped carbon electrodes show promising activity for the positive side reaction and could be seen as a significant advance in the design of carbon felt electrodes for use in redox flow batteries.
Degradation Phenomena of Bismuth-Modified Felt Electrodes in VRFB Studied by Electrochemical Impedance Spectroscopy
The performance of all-V redox flow batteries (VRFB) will decrease when they are exposed to dynamic electrochemical cycling, but also when they are in prolonged contact with the acidic electrolyte. These phenomena are especially severe at the negative side, where the parasitic hydrogen evolution reaction (HER) will be increasingly favored over the reduction of V(III) with ongoing degradation of the carbon felt electrode. Bismuth, either added to the electrolyte or deposited onto the felt, has been reported to suppress the HER and therefore to enhance the kinetics of the V(II)/V(III) redox reaction. This study is the first to investigate degradation effects on bismuth-modified electrodes in the negative half-cell of a VRFB. By means of a simple impregnation method, a commercially available carbon felt was decorated with Bi 2 O 3 , which is supposedly present as Bi(0) under the working conditions at the negative side. Modified and unmodified felts were characterized electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a three-electrode setup. Surface morphology of the electrodes and composition of the negative half-cell electrolyte were probed using scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (TXRF), respectively. This was done before and after the electrodes were subjected to 50 charge-discharge cycles in a battery test bench. Our results suggest that not only the bismuth catalyst is dissolved from the electrode during battery operation, but also that the presence of bismuth in the system has a strong accelerating effect on electrode degradation.