Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,357 result(s) for "Schneider, Richard A"
Sort by:
Anatomical connections among the depressor supercilii, levator labii superioris alaeque nasi, and inferior fibers of orbicularis oculi: Implications for variation in human facial expressions
The aim of this study was to determine how the depressor supercilii (DS) connects to the levator labii superioris alaeque nasi (LLSAN) and inferior fibers of the orbicularis oculi (OOc INF) in the human midface. While grimacing, contraction of the DS with fibers connecting to the LLSAN and OOc INF can assist in pulling the medial eyebrow downward more than when these connecting fibers are not present. Contraction of these distinct connecting fibers between the DS and the LLSAN can also slightly elevate the nasal ala and upper lip. The DS was examined in 44 specimens of embalmed adult Korean cadavers. We found that the DS connected to the LLSAN or the OOc INF by muscle fibers or thin aponeuroses in 33 (75.0%) of the 44 specimens. The DS was connected to both the LLSAN and OOc INF by muscle fibers or aponeuroses and had no connection to either in 5 (11.4%) and 11 (25.0%) specimens, respectively. The DS was connected to the LLSAN by the muscle fibers and thin aponeuroses in 6 (13.6%) and 4 (9.1%) specimens, respectively. The DS was connected to the OOc INF by the muscle fibers and thin aponeuroses in 5 (11.4%) and 23 (52.3%) specimens, respectively. Our findings regarding the anatomical connections of the glabellar region DS to the midface LLSAN and OOc INF provide insights on the dynamic balance between the brow depressors such as the DS and brow-elevating muscle and contribute to understanding the anatomical origins of individual variation in facial expressions. These results can also improve the safety, predictability, and aesthetics of treatments for the glabellar region with botulinum toxin type A and can be helpful when performing electromyography.
Crossing fibers may underlie the dynamic pulling forces of muscles that attach to cartilage at the tip of the nose
The present study used microdissection, histology, and microcomputed tomography (micro-CT) with the aims of determining the prevalence and patterns of the depressor septi nasi (DSN) and orbicularis oris (OOr) muscles attached to the footplate of the medial crus (fMC) of the major alar cartilage, focusing on their crossing fibers. The DSN and OOr attached to the fMC of the major alar cartilage were investigated in 76 samples from 38 embalmed Korean adult cadavers (20 males, 18 females; mean age 70 years). The DSN, OOr, or both were attached to the fMC. When the DSN ran unilaterally or was absent, some OOr fibers ascended to attach to the fMC instead of the DSN in 20.6% of the samples. Crossing fibers of the DSN or OOr attached to the fMC were found in 82.4% of the samples. Bilateral and unilateral crossing fibers were found in 32.4% and 50.0%, respectively, and no crossing fibers were found in 17.6%. The DSN and OOr that attached to the fMC could be categorized into six types according to presence of the DSN and the crossing patterns of the DSN and OOr. Anatomical findings of the DSN and OOr that attached to the fMC were confirmed in histology and micro-CT images. These findings offer insights on anatomical mechanisms that may underlie the dynamic pulling forces generated by muscles that attach to the fMCs and on evolutionary variation observed in human facial expressions. They can also provide useful information for guiding rhinoplasty of the nasal tip.
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 ( Mmp13 ) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 ( Runx2 ) , which bind Mmp13 , become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Molecular and cellular changes associated with the evolution of novel jaw muscles in parrots
Vertebrates have achieved great evolutionary success due in large part to the anatomical diversification of their jaw complex, which allows them to inhabit almost every ecological niche. While many studies have focused on mechanisms that pattern the jaw skeleton, much remains to be understood about the origins of novelty and diversity in the closely associated musculature. To address this issue, we focused on parrots, which have acquired two anatomically unique jaw muscles: the ethmomandibular and the pseudomasseter. In parrot embryos, we observe distinct and highly derived expression patterns for Scx, Bmp4, Tgfβ2 and Six2 in neural crest-derived mesenchyme destined to form jaw muscle connective tissues. Furthermore, immunohistochemical analysis reveals that cell proliferation is more active in the cells within the jaw muscle than in surrounding connective tissue cells. This biased and differentially regulated mode of cell proliferation in cranial musculoskeletal tissues may allow these unusual jaw muscles to extend towards their new attachment sites. We conclude that the alteration of neural crest-derived connective tissue distribution during development may underlie the spatial changes in jaw musculoskeletal architecture found only in parrots. Thus, parrots provide valuable insights into molecular and cellular mechanisms that may generate evolutionary novelties with functionally adaptive significance.
Structured Coculture of Mesenchymal Stem Cells and Disc Cells Enhances Differentiation and Proliferation
Purpose: During in vivo stem cell differentiation, mature cells often induce the differentiation of nearby stem cells. Accordingly, prior studies indicate that a randomly mixed coculture can help transform mesenchymal stem cells (MSC) into nucleus pulposus cells (NPC). However, because in vivo signaling typically occurs heterotopically between adjacent cell layers, we hypothesized that a structurally organized coculture between MSC and NPC will result in greater cell differentiation and proliferation over single cell-type controls and cocultures with random organization. Methods: We developed a novel bilaminar cell pellet (BCP) system where a sphere of MSC is enclosed in a shell of NPC by successive centrifugation. Controls were made using single cell-type pellets and coculture pellets with random organization. The pellets were evaluated for DNA content, gene expression, and histology. Results: A bilaminar 3D organization enhanced cell proliferation and differentiation. BCP showed significantly more cell proliferation than pellets with one cell type and those with random organization. Enhanced differentiation of MSC within the BCP pellet relative to single cell-type pellets was demonstrated by quantitative RT-PCR, histology, and in situ hybridization. Conclusions: The BCP culture system increases MSC proliferation and differentiation as compared to single cell type or randomly mixed coculture controls.
Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-β and Runx2 in bone is required for hearing
Physical cues, such as extracellular matrix stiffness, direct cell differentiation and support tissue‐specific function. Perturbation of these cues underlies diverse pathologies, including osteoarthritis, cardiovascular disease and cancer. However, the molecular mechanisms that establish tissue‐specific material properties and link them to healthy tissue function are unknown. We show that Runx2, a key lineage‐specific transcription factor, regulates the material properties of bone matrix through the same transforming growth factor‐β (TGFβ)‐responsive pathway that controls osteoblast differentiation. Deregulated TGFβ or Runx2 function compromises the distinctly hard cochlear bone matrix and causes hearing loss, as seen in human cleidocranial dysplasia. In Runx2 +/− mice, inhibition of TGFβ signalling rescues both the material properties of the defective matrix, and hearing. This study elucidates the unknown cause of hearing loss in cleidocranial dysplasia, and demonstrates that a molecular pathway controlling cell differentiation also defines material properties of extracellular matrix. Furthermore, our results suggest that the careful regulation of these properties is essential for healthy tissue function. By investigating the role of bone quality in hearing, this study provides evidence that signaling pathways and lineage‐specific transcription factors cooperate to define the tissue‐specific and functionally essential material properties of the extracellular matrix.
Species-specific sensitivity to TGFbeta signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGF[beta]) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGF[beta] signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGF[beta] sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGF[beta] signaling and Mmp13 promoter structure underlie avian jaw development and evolution.