Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Schofield, Robyn"
Sort by:
Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide
Natural aerosol emission represents one of the largest uncertainties in our understanding of the radiation budget. Sulfur emitted by marine organisms, as dimethyl sulfide (DMS), constitutes one-fifth of the global sulfur budget and yet the distribution, fluxes and fate of DMS remain poorly constrained. This study evaluates the Australian Community Climate and Earth System Simulator (ACCESS) United Kingdom Chemistry and Aerosol (UKCA) model in terms of cloud fraction, radiation and precipitation, and then quantifies the role of DMS in the chemistry–climate system. We find that ACCESS-UKCA has similar cloud and radiation biases to other global climate models. By removing all DMS, or alternatively significantly enhancing marine DMS, we find a top of the atmosphere radiative effect of 1.7 and −1.4 W m−2 respectively. The largest responses to these DMS perturbations (removal/enhancement) are in stratiform cloud decks in the Southern Hemisphere's eastern ocean basins. These regions show significant differences in low cloud (-9/+6 %), surface incoming shortwave radiation (+7/-5 W m−2) and large-scale rainfall (+15/-10 %). We demonstrate a precipitation suppression effect of DMS-derived aerosol in stratiform cloud deck regions due to DMS, coupled with an increase in low cloud fraction. The difference in low cloud fraction is an example of the aerosol lifetime effect. Globally, we find a sensitivity of temperature to annual DMS flux of 0.027 and 0.019 K per Tg yr−1 of sulfur, respectively. Other areas of low cloud formation, such as the Southern Ocean and stratiform cloud decks in the Northern Hemisphere, have a relatively weak response to DMS perturbations. We highlight the need for greater understanding of the DMS–climate cycle within the context of uncertainties and biases of climate models as well as those of DMS–climate observations.
Daytime HONO, NO2 and aerosol distributions from MAX-DOAS observations in Melbourne
Toxic nitrogen oxides produced by high temperature combustion are prevalent in urban environments, contributing to a significant health burden. Nitrogen oxides such as NO2 and HONO in pollution are important for hydroxyl radical (OH) production and overall oxidative capacity in urban environments; however, current mechanisms cannot explain high daytime levels of HONO observed in many urban and rural locations around the world. Here we present HONO, NO2 and aerosol extinction vertical distributions retrieved from multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in suburban Melbourne, which are the first MAX-DOAS results from the Australian continent. Using the optimal estimation algorithm HEIPRO we show that vertical profiles for NO2 and HONO can be calculated with a low dependence on the retrieval forward model and a priori parameters, despite a lack of independent co-located aerosol or trace gas measurements. Between December 2016 and April 2017 average peak NO2 values of 8±2 ppb indicated moderate traffic pollution levels, and high daytime peak values of HONO were frequently detected, averaging 220±30 ppt in the middle of the day. HONO levels measured in Melbourne were typically lower than those recorded in the morning in other places around the world, indicating minimal overnight accumulation, but peaked in the middle of the day to be commensurate with midday concentrations in locations with much higher NO2 pollution. Regular midday peaks in the diurnal cycle of HONO surface concentrations have only previously been reported in rural locations. The HONO measured implies a daytime source term 1 ppb h−1 above the predicted photostationary state (PSS) concentration and represents an OH radical source up to 4 times stronger than from ozone photolysis alone in the lowest 500 m of the troposphere. The dependence of the high midday HONO levels on soil moisture, combined with the observed diurnal and vertical profiles, provides evidence for a strong photoactivated and ground-based daytime HONO source.
Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs
Dimethyl sulfide (DMS) is a naturally occurring aerosol precursor gas which plays an important role in the global sulfur budget, aerosol formation and climate. While DMS is produced predominantly by phytoplankton, recent observational literature has suggested that corals and their symbionts produce a comparable amount of DMS, which is unaccounted for in models. It has further been hypothesised that the coral reef source of DMS may modulate regional climate. This hypothesis presents a particular concern given the current threat to coral reefs under anthropogenic climate change. In this paper, a global climate model with online chemistry and aerosol is used to explore the influence of coral-reef-derived DMS on atmospheric composition and climate. A simple representation of coral-reef-derived DMS is developed and added to a common DMS surface water climatology, resulting in an additional flux of 0.3 Tg yr−1 S, or 1.7 % of the global sulfur flux from DMS. By comparing the differences between both nudged and free-running ensemble simulations with and without coral-reef-derived DMS, the influence of coral-reef-derived DMS on regional climate is quantified. In the Maritime Continent–Australian region, where the highest density of coral reefs exists, a small decrease in nucleation- and Aitken-mode aerosol number concentration and mass is found when coral reef DMS emissions are removed from the system. However, these small responses are found to have no robust effect on regional climate via direct and indirect aerosol effects. This work emphasises the complexities of the aerosol–climate system, and the limitations of current modelling capabilities are highlighted, in particular surrounding convective responses to changes in aerosol. In conclusion, we find no robust evidence that coral-reef-derived DMS influences global and regional climate.
Ship fuel sulfur content regulations may exacerbate mass coral bleaching events on the Great Barrier Reef
Global shipping fuel sulphur content regulations introduced in 2020 reduced the radiative cooling effects of sulfate aerosol over the ocean. Here we use the WRF-Chem model to estimate the effect these regulations have had on aerosols, clouds and solar radiation at the Great Barrier Reef, where climate change is increasing the frequency of mass coral bleaching events. During February 2022, the build-up to a La Niña mass coral bleaching event, we find 11 Wm −2 extra daytime downwards shortwave radiation reaches the reef post-sulfate regulation, compared to the control pre-regulation scenario. The enhancement is dominated by clear-sky-only forcing changes and less severe in cloudier and windier periods. Persistent incoming shortwave radiation enhancements on the order of 5-11 Wm −2 likely lead to sea-surface temperature increases of 0.05-0.15 °C, implying that during bleaching-conducive conditions, 5-10% additional thermal stress is felt by GBR corals now than before the regulation of ship sulfate emissions. Reduced sulfate aerosols due to ship fuel regulation may increase shortwave radiation on the Great Barrier Reef, exacerbating the impact of marine heatwaves on coral bleaching, according to model analysis of ship emission impacts on aerosols, clouds and solar radiation.
Microbial mercury methylation in Antarctic sea ice
Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean. Measurements of mercury species and metagenomic analyses of Antarctic snow, brine, sea ice, and seawater suggest that mercury methylation may be conducted by the marine microaerophilic bacterium Nitrospina in Antarctic sea ice.
Observations of the Boundary Layer in the Cape Grim Coastal Region: Interaction with Wind and the Influences of Continental Sources
A comparative study and evaluation of boundary layer height (BLH) estimation was conducted during an experimental campaign conducted at the Cape Grim Air Pollution station, Australia, from 1 June to 13 July 2019. The temporal and spatial distributions of BLH were studied using data from a ceilometer, sodar, in situ meteorological measurements, and back-trajectory analyses. Generally, the BLH under continental sources is lower than that under marine sources. The BLH is featured with a shallow depth of 515 ± 340 m under the Melbourne/East Victoria continental source. Especially the mixed continental sources (Melbourne/East Victoria and Tasmania direction) lead to a rise in radon concentration and lower BLH. In comparison, the boundary layer reaches a higher averaged BLH value of 730 ± 305 m when marine air is prevalent. The BLH derived from ERA5 is positively biased compared to the ceilometer observations, except when the boundary layer is stable. The height at which wind profiles experience rapid changes corresponds to the BLH value. The wind flow within the boundary layer increased up to ∼200 m, where it then meandered up to ∼300 m. Furthermore, the statistic shows that BLH is positively associated with near-surface wind speed. This study firstly provides information on boundary layer structure in Cape Grim and the interaction with wind, which may aid in further evaluating their associated impacts on the climate and ecosystem.
The influence of mixing on the stratospheric age of air changes in the 21st century
Climate models consistently predict an acceleration of the Brewer–Dobson circulation (BDC) due to climate change in the 21st century. However, the strength of this acceleration varies considerably among individual models, which constitutes a notable source of uncertainty for future climate projections. To shed more light upon the magnitude of this uncertainty and on its causes, we analyse the stratospheric mean age of air (AoA) of 10 climate projection simulations from the Chemistry-Climate Model Initiative phase 1 (CCMI-I), covering the period between 1960 and 2100. In agreement with previous multi-model studies, we find a large model spread in the magnitude of the AoA trend over the simulation period. Differences between future and past AoA are found to be predominantly due to differences in mixing (reduced aging by mixing and recirculation) rather than differences in residual mean transport. We furthermore analyse the mixing efficiency, a measure of the relative strength of mixing for given residual mean transport, which was previously hypothesised to be a model constant. Here, the mixing efficiency is found to vary not only across models, but also over time in all models. Changes in mixing efficiency are shown to be closely related to changes in AoA and quantified to roughly contribute 10 % to the long-term AoA decrease over the 21st century. Additionally, mixing efficiency variations are shown to considerably enhance model spread in AoA changes. To understand these mixing efficiency variations, we also present a consistent dynamical framework based on diffusive closure, which highlights the role of basic state potential vorticity gradients in controlling mixing efficiency and therefore aging by mixing.
Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI
South-eastern Australia has been identified by modelling studies as a hotspot of biogenic volatile organic compound (VOC) emissions; however, long-term observational VOC studies are lacking in this region. Here, 2.5 years of multi-axis differential optical absorption spectroscopy (MAX-DOAS) formaldehyde (HCHO) measurements in Australasia are presented, from Broadmeadows, in northern Melbourne, Australia, and from Lauder, a rural site in the South Island of New Zealand. Across the measurement period from December 2016 to November 2019, the mean formaldehyde columns measured by the MAX-DOAS were 2.50±0.61×1015 molec. cm−2 at Lauder and 5.40±1.59×1015 molec. cm−2 at Broadmeadows. In both locations, the seasonal cycle showed a pronounced peak in Austral summer (December–January–February) consistent with temperature-dependent formaldehyde production from biogenic precursor gases. The amplitude of the seasonal cycle was 0.7×1015 molec. cm−2 at Lauder, and it was 2.0×1015 molec. cm−2 at Broadmeadows. The Lauder MAX-DOAS HCHO measurements are compared with 27 months of co-located Fourier transform infrared (FTIR) observations. The seasonal variation of Lauder MAX-DOAS HCHO, smoothed by the FTIR averaging kernels, showed good agreement with the FTIR measurements, with a linear regression slope of 1.03 and an R2 of 0.66 for monthly averaged formaldehyde partial columns (0–4 km). In addition to ground-based observations, a clear way to address the VOC measurement gap in areas such as Australasia is with satellite measurements. Here, we demonstrate that the TROPOspheric Monitoring Instrument (TROPOMI) can be used to distinguish formaldehyde hotspots in forested and agricultural regions of south-eastern Australia. The MAX-DOAS measurements are also compared to TROPOMI HCHO vertical columns at Lauder and Melbourne; very strong monthly average agreement is found for Melbourne (regression slope of 0.61 and R2 of 0.95) and a strong agreement is found at Lauder (regression slope of 0.73 and R2 of 0.61) for MAX-DOAS vs. TROPOMI between May 2018 and November 2019. This study, the first long-term satellite comparison study using MAX-DOAS in the Southern Hemisphere, highlights the improvement offered by TROPOMI's high resolution over previous satellite products and provides the groundwork for future studies using ground-based and satellite DOAS for studying VOCs in Australasia.
Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere
Chemistry–climate models are important tools for addressing interactions of composition and climate in the Earth system. In particular, they are used to assess the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator – chemistry–climate model (ACCESS-CCM), focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry–Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October-averaged Antarctic TCO from 1960 to 2010 shows a similar amount of depletion compared to observations. Comparison with model precursors shows large improvements in the representation of the Southern Hemisphere stratosphere, especially in TCO concentrations. A significant innovation is seen in the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (greater than 26 % at Davis and the South Pole during winter) and stratospheric cold biases (up to 10 K at the South Pole during summer and autumn) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centred around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The model's inability to explicitly simulate a supercooled ternary solution may also explain the lack of depletion at lower altitudes. Analysis of the simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data, an important metric for correct representation of Australian climate. Accompanying these modulations of the SAM, 50 hPa zonal wind differences between 2001–2010 and 1979–1998 show increasing zonal wind strength southward of 60° S during December for both the model simulations and ERA-Interim data. These model diagnostics show that the model reasonably captures the stratospheric ozone-driven chemistry–climate interactions important for Australian climate and weather while highlighting areas for future model development.
Atmospheric Trace Metal Deposition near the Great Barrier Reef, Australia
Aerosols deposited into the Great Barrier Reef (GBR) contain iron (Fe) and other trace metals, which may act as micronutrients or as toxins to this sensitive marine ecosystem. In this paper, we quantified the atmospheric deposition of Fe and investigated aerosol sources in Mission Beach (Queensland) next to the GBR. Leaching experiments were applied to distinguish pools of Fe with regard to its solubility. The labile Fe concentration in aerosols was 2.3–10.6 ng m−3, which is equivalent to 4.9%–11.4% of total Fe and was linked to combustion and biomass burning processes, while total Fe was dominated by crustal sources. A one-day precipitation event provided more soluble iron than the average dry deposition flux, 0.165 and 0.143 μmol m−2 day−1, respectively. Scanning Electron Microscopy indicated that alumina-silicates were the main carriers of total Fe and samples affected by combustion emissions were accompanied by regular round-shaped carbonaceous particulates. Collected aerosols contained significant amounts of Cd, Co, Cu, Mo, Mn, Pb, V, and Zn, which were mostly (47.5%–96.7%) in the labile form. In this study, we provide the first field data on the atmospheric delivery of Fe and other trace metals to the GBR and propose that this is an important delivery mechanism to this region.