Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Schulthess, Urs"
Sort by:
Variable rate nitrogen fertilizer response in wheat using remote sensing
Nitrogen (N) fertilizer application can lead to increased crop yields but its use efficiency remains generally low which can cause environmental problems related to nitrate leaching as well as nitrous oxide emissions to the atmosphere. The objectives of this study were to: (i) to demonstrate that properly identified variable rates of N fertilizer lead to higher use efficiency and (ii) to evaluate the capability of high spectral resolution satellite to detect within-field crop N response using vegetation indices. This study evaluated three N fertilizer rates (30, 70, and 90 kg N ha⁻¹) and their response on durum wheat yield across the field. Fertilizer rates were identified through the adoption of the SALUS crop model, in addition to a spatial and temporal analysis of observed wheat grain yield maps. Hand-held and high spectral resolution satellite remote sensing data were collected before and after a spring side dress fertilizer application with FieldSpec, HandHeld Pro® and RapidEye™, respectively. Twenty-four vegetation indices were compared to evaluate yield performance. Stable zones within the field were defined by analyzing the spatial stability of crop yield of the previous 5 years (Basso et al. in Eur J Agron 51: 5, 2013). The canopy chlorophyll content index (CCCI) discriminated crop N response with an overall accuracy of 71 %, which allowed assessment of the efficiency of the second N application in a spatial context across each management zone. The CCCI derived from remotely sensed images acquired before and after N fertilization proved useful in understanding the spatial response of crops to N fertilization. Spectral data collected with a handheld radiometer on 100 grid points were used to validate spectral data from remote sensing images in the same locations and to verify the efficacy of the correction algorithms of the raw data. This procedure was presented to demonstrate the accuracy of the satellite data when compared to the handheld data. Variable rate N increased nitrogen use efficiency with differences that can have significant implication to the N₂O emissions, nitrate leaching, and farmer’s profit.
Satellite imagery for high-throughput phenotyping in breeding plots
Advances in breeding efforts to increase the rate of genetic gains and enhance crop resilience to climate change have been limited by the procedure and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology, and data-analysis has provided opportunities for multiple scales phenotyping methods and systems, including satellite imagery. Among these platforms, satellite imagery may represent one of the ultimate approaches to remotely monitor trials and nurseries planted in multiple locations while standardizing protocols and reducing costs. However, the deployment of satellite-based phenotyping in breeding trials has largely been limited by low spatial resolution of satellite images. The advent of a new generation of high-resolution satellites may finally overcome these limitations. The SkySat constellation started offering multispectral images at a 0.5 m resolution since 2020. In this communication we present a case study on the use of time series SkySat images to estimate NDVI from wheat and maize breeding plots encompassing different sizes and spacing. We evaluated the reliability of the calculated NDVI and tested its capacity to detect seasonal changes and genotypic differences. We discuss the advantages, limitations, and perspectives of this approach for high-throughput phenotyping in breeding programs.
Increased ranking change in wheat breeding under climate change
The International Maize and Wheat Improvement Center develops and annually distributes elite wheat lines to public and private breeders worldwide. Trials have been created in multiple sites over many years to assess the lines’ performance for use in breeding and release as varieties, and to provide iterative feedback on refining breeding strategies 1 . The collaborator test sites are experiencing climate change, with new implications for how wheat genotypes are bred and selected 2 . Using a standard quantitative genetic model to analyse four International Maize and Wheat Improvement Center global spring wheat trial datasets, we examine how genotype–environment interactions have changed over recent decades. Notably, crossover interactions—a critical indicator of changes in the ranking of cultivar performance in different environments—have increased over time. Climatic factors explained over 70% of the year-to-year variability in crossover interactions for yield. Yield responses of all lines in trial environments from 1980 to 2018 revealed that climate change has increased the ranking change in breeding targeted to favourable environments by ~15%, while it has maintained or reduced the ranking change in breeding targeted to heat and drought stress by up to 13%. Genetic improvement has generally increased crossover interactions, particularly for wheat targeted to high-yielding environments. However, the latest wheat germplasm developed under heat stress was better adapted and more stable, partly offsetting the increase in ranking changes under the warmer climate. Analyses of four International Maize and Wheat Improvement Center global spring wheat trial datasets showed that genotype–environment interactions have changed over recent decades and crossover interactions have increased, largely owing to climatic factors, making breeders’ decision-making harder.
Identification of Mung Bean in a Smallholder Farming Setting of Coastal South Asia Using Manned Aircraft Photography and Sentinel-2 Images
Mung bean (Vigna radiata) plays an important role providing protein in the rice-based diet of the people in Bangladesh. In the coastal division of Barisal, our study area, the average farm size is less than 0.5 ha and individual fields measure about 0.10 ha. The availability of free Sentinel-2 optical satellite data acquired at a 10 m ground sampling distance (GSD) may offer an opportunity to generate crop area estimates in smallholder farming settings in South Asia. We combined different sources of in situ data, such as aerial photographs taken from a low flying manned aircraft, data collected on the ground, and data derived from satellite images to create a data set for a segment based classification of mung bean. User’s accuracy for mung bean was 0.98 and producer’s accuracy was 0.99. Hence, the accuracy metrics indicate that the random tree classifier was able to identify mung bean based on 10 m GSD data, despite the small size of individual fields. We estimated the mung bean area for 2019 at 109,416 ha, which is about 40% lower than the Department of Agricultural Extension estimates (183,480 ha), but more than four times higher than the 2019 data reported by the Bangladesh Bureau of Statistics (26,612 ha). Further analysis revealed that crop production tends to be clustered in the landscape by crop type. After merging adjacent segments by crop type, the following average cluster sizes resulted: 1.62 ha for mung bean, 0.74 ha for rice (Oryza sativa), 0.68 ha for weedy fallow and 0.40 ha for a category of other crops. This explains why 10 m GSD satellite data can be used for the identification of predominant crops grown in specific regions of South Asia.
Optimal Sample Size and Composition for Crop Classification with Sen2-Agri’s Random Forest Classifier
Sen2-Agri is a software system that was developed to facilitate the use of multi-temporal satellite data for crop classification with a random forest (RF) classifier in an operational setting. It automatically ingests and processes Sentinel-2 and LandSat 8 images. Our goal was to provide practitioners with recommendations for the best sample size and composition. The study area was located in the Yaqui Valley in Mexico. Using polygons of more than 6000 labeled crop fields, we prepared data sets for training, in which the nine crops had an equal or proportional representation, called Equal or Ratio, respectively. Increasing the size of the training set improved the overall accuracy (OA). Gains became marginal once the total number of fields approximated 500 or 40 to 45 fields per crop type. Equal achieved slightly higher OAs than Ratio for a given number of fields. However, recall and F-scores of the individual crops tended to be higher for Ratio than for Equal. The high number of wheat fields in the Ratio scenarios, ranging from 275 to 2128, produced a more accurate classification of wheat than the maximal 80 fields of Equal. This resulted in a higher recall for wheat in the Ratio than in the Equal scenarios, which in turn limited the errors of commission of the non-wheat crops. Thus, a proportional representation of the crops in the training data is preferable and yields better accuracies, even for the minority crops.
Using Sentinel-2 to Track Field-Level Tillage Practices at Regional Scales in Smallholder Systems
Zero tillage is an important pathway to sustainable intensification and low-emission agriculture. However, quantifying the extent of zero tillage adoption at the field scale has been challenging, especially in smallholder systems where field sizes are small and there is limited ground data on zero tillage adoption. Remote sensing offers the ability to map tillage practices at large spatio-temporal scales, yet to date no studies have used satellite data to map zero tillage adoption in smallholder agricultural systems. In this study, we use Sentinel-2 satellite data, random forest classifiers, and Google Earth Engine to map tillage practices across India’s main grain producing region, the Indo-Gangetic Plains. We find that tillage practices can be classified with moderate accuracy (an overall accuracy of 75%), particularly in regions with relatively large field sizes and homogenous crop management practices. We find that models that use satellite data from only the first half of the growing season perform as well as models that use data throughout the growing season, allowing for the creation of within-season tillage maps. Finally, we find that our model can generalize well through time in the western IGP, with reductions in accuracy of only 5–10%. Our results highlight the ability of Sentinel-2 satellite data to map tillage practices at scale, even in smallholder systems where field sizes are small and cropping practices are heterogeneous.
Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content
This study evaluates the potential of high resolution hyperspectral airborne imagery to capture within-field variability of durum wheat grain yield (GY) and grain protein content (GPC) in two commercial fields in the Yaqui Valley (northwestern Mexico). Through a weekly/biweekly airborne flight campaign, we acquired 10 mosaics with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400–850 nanometres (nm). Just before harvest, 114 georeferenced grain samples were obtained manually. Using spectral exploratory analysis, we calculated narrow-band physiological spectral indices—normalized difference spectral index (NDSI) and ratio spectral index (RSI)—from every single hyperspectral mosaic using complete two by two combinations of wavelengths. We applied two methods for the multi-temporal hyperspectral exploratory analysis: (a) Temporal Principal Component Analysis (tPCA) on wavelengths across all images and (b) the integration of vegetation indices over time based on area under the curve (AUC) calculations. For GY, the best R2 (0.32) were found using both the spectral (NDSI—Ri, 750 to 840 nm and Rj, ±720–736 nm) and the multi-temporal AUC exploratory analysis (EVI and OSAVI through AUC) methods. For GPC, all exploratory analysis methods tested revealed (a) a low to very low coefficient of determination (R2 ≤ 0.21), (b) a relatively low overall prediction error (RMSE: 0.45–0.49%), compared to results from other literature studies, and (c) that the spectral exploratory analysis approach is slightly better than the multi-temporal approaches, with early season NDSI of 700 with 574 nm and late season NDSI of 707 with 523 nm as the best indicators. Using residual maps from the regression analyses of NDSIs and GPC, we visualized GPC within-field variability and showed that up to 75% of the field area could be mapped with relatively good predictability (residual class: −0.25 to 0.25%), therefore showing the potential of remote sensing imagery to capture the within-field variation of GPC under conventional agricultural practices.
Role of Modelling in International Crop Research: Overview and Some Case Studies
Crop modelling has the potential to contribute to global food and nutrition security. This paper briefly examines the history of crop modelling by international crop research centres of the CGIAR (formerly Consultative Group on International Agricultural Research but now known simply as CGIAR), whose primary focus is on less developed countries. Basic principles of crop modelling building up to a Genotype × Environment × Management × Socioeconomic (G × E × M × S) paradigm, are explained. Modelling has contributed to better understanding of crop performance and yield gaps, better prediction of pest and insect outbreaks, and improving the efficiency of crop management including irrigation systems and optimization of planting dates. New developments include, for example, use of remote sensed data and mobile phone technology linked to crop management decision support models, data sharing in the new era of big data, and the use of genomic selection and crop simulation models linked to environmental data to help make crop breeding decisions. Socio-economic applications include foresight analysis of agricultural systems under global change scenarios, and the consequences of potential food system shocks are also described. These approaches are discussed in this paper which also calls for closer collaboration among disciplines in order to better serve the crop research and development communities by providing model based recommendations ranging from policy development at the level of governmental agencies to direct crop management support for resource poor farmers.
Remote Sensing Based Simple Models of GPP in Both Disturbed and Undisturbed Piñon-Juniper Woodlands in the Southwestern U.S
Remote sensing is a key technology that enables us to scale up our empirical, in situ measurements of carbon uptake made at the site level. In low leaf area index ecosystems typical of semi-arid regions however, many assumptions of these remote sensing approaches fall short, given the complexities of the heterogeneous landscape and frequent disturbance. Here, we investigated the utility of remote sensing data for predicting gross primary production (GPP) in piñon-juniper woodlands in New Mexico (USA). We developed a simple model hierarchy using climate drivers and satellite vegetation indices (VIs) to predict GPP, which we validated against in situ estimates of GPP from eddy-covariance. We tested the influence of pixel size on model fit by comparing model performance when using VIs from RapidEye (5 m) and the VIs from Landsat ETM+ (30 m). We also tested the ability of the normalized difference wetness index (NDWI) and normalized difference red edge (NDRE) to improve model fits. The best predictor of GPP at the undisturbed PJ woodland was Landsat ETM+ derived NDVI (normalized difference vegetation index), whereas at the disturbed site, the red-edge VI performed best (R2adj of 0.92 and 0.90 respectively). The RapidEye data did improve model performance, but only after we controlled for the variability in sensor view angle, which had a significant impact on the apparent cover of vegetation in our low fractional cover experimental woodland. At both sites, model performance was best either during non-stressful growth conditions, where NDVI performed best, or during severe ecosystem stress conditions (e.g., during the girdling process), where NDRE and NDWI improved model fit, suggesting the inclusion of red-edge leveraging and moisture sensitive VI in simple, data driven models can constrain GPP estimate uncertainty during periods of high ecosystem stress or disturbance.
Cascading socio-environmental sustainability risks of agricultural export miracle in Peru
This commentary sheds light on the integration of cascading environmental, economic, and social risks into conscious sustainable development strategies. For this, we investigated the Andean Trade Preference Act (ATPA), which was established in 1991 to simultaneously fight against the production, processing, and trafficking of illegal drugs while also developing alternative industries to expand economic opportunities in the Andean countries (Bolivia, Colombia, Ecuador, and Peru); which are being faced with decades of narcotic violence and corruption. Accordingly, we unfolded the chains of mechanisms by which, cascading like toppling dominoes, the ATPA has led to a profitable economy but unsustainable environment and social inequality in the hyper-arid region of Ica in Peru. To pioneer Peru in sustainability risk management in Ica, hence, it is recommended to act towards regional sustainable irrigation expansion by employing efficient water-saving irrigation technologies. Finally, we indicated that freshwater should be considered as both natural and human rights in sustainable alternative development strategies.