Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
424 result(s) for "Schulz, Georg"
Sort by:
Three taphonomic stories of three new fossil species of Darwin wasps (Hymenoptera, Ichneumonidae)
Amber captures a snapshot of life and death from millions of years in the past. Here, the fate of three fossil Darwin wasps in Baltic amber is virtually dissected with the help of micro-CT scanning, to better understand the taphonomic processes that affected their preservation. The states of the fossils range from nearly perfect preservation, including remains of internal organs, to empty casts that were strongly affected by decomposition. We describe the three specimens as new taxa, Osparvis aurorae gen. et sp. nov., Grana harveydenti gen. et sp. nov. and Xorides ? romeo sp. nov. Based on the taphonomic and morphological interpretations, we conclude that two specimens were trapped alive, and the third ended up in resin post-mortem. The morphology and classification of the specimens provide clues regarding their ecology, and we discuss their likely hosts and parasitation modes. Taken together, our three wasp fossils showcase how an integrative analysis of amber taphonomy, taxonomic association and morphology can shed light onto past biodiversity and offer valuable insights for interpreting their evolutionary history.
The Structure of a Mycobacterial Outer-Membrane Channel
Mycobacteria have low-permeability outer membranes that render them resistant to most antibiotics. Hydrophilic nutrients can enter by way of transmembrane-channel proteins called porins. An x-ray analysis of the main porin from Mycobacterium smegmatis, MspA, revealed a homooctameric goblet-like conformation with a single central channel. This is the first structure of a mycobacterial outermembrane protein. No structure-related protein was found in the Protein Data Bank. MspA contains two consecutive β barrels with nonpolar outer surfaces that form a ribbon around the porin, which is too narrow to fit the thickness of the mycobacterial outer membrane in contemporary models.
The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences
The inner ear of toothed whales (odontocetes) is known to have evolved particular shapes related to their abilities to echolocate and move under water. While the origin of these capacities is now more and more examined, thanks to new imaging techniques, little is still known about how informative inner ear shape could be to tackle phylogenetic issues or questions pertaining to the habitat preferences of extinct species. Here we show that the shape of the bony labyrinth of toothed whales provides key information both about phylogeny and habitat preferences (freshwater versus coastal and fully marine habitats). Our investigation of more than 20 species of extinct and modern odontocetes shows that the semi-circular canals are not very informative, in contrast to baleen whales, while the cochlea alone bears a strong signal. Inner ear shape thus provides a novel source of information to distinguish between morphologically convergent lineages (e.g. river dolphins).
Structural Basis for the Entrance into the Phenylpropanoid Metabolism Catalyzed by Phenylalanine Ammonia-Lyase
Because of its key role in secondary phenylpropanoid metabolism, Phe ammonia-lyase is one of the most extensively studied plant enzymes. To provide a basis for detailed structure-function studies, the enzyme from parsley (Petroselinum crispum) was crystallized, and the structure was elucidated at 1.7-Å resolution. It contains the unusual electrophilic 4-methylidene-imidazole-5-one group, which is derived from a tripeptide segment in two autocatalytic dehydration reactions. The enzyme resembles His ammonia-lyase from the general His degradation pathway but contains 207 additional residues, mainly in an N-terminal extension rigidifying a domain interface and in an inserted α-helical domain restricting the access to the active center. Presumably, Phe ammonia-lyase developed from His ammonia-lyase when fungi and plants diverged from the other kingdoms. A pathway of the catalyzed reaction is proposed in agreement with established biochemical data. The inactivation of the enzyme by a nucleophile is described in detail.
Self-Assembly of Proteins into Designed Networks
A$C_4-symmetric$tetrameric aldolase was used to produce a quadratic network consisting of the enzyme as a rigid four-way connector and stiff streptavidin rods as spacers. Each aldolase subunit was furnished with a His6tag for oriented binding to a planar surface and two tethered biotins for binding streptavidin in an oriented manner. The networks were improved by starting with composite units and also by binding to nickel-nitrilotriacetic acid-lipid monolayers. The mesh was adjustable in 5-nanometer increments. The production of a net with switchable mesh was initiated with the use of a calcium ion-containing$\\beta-helix$spacer that denatured on calcium ion depletion.
Bony labyrinth morphology clarifies the origin and evolution of deer
Deer are an iconic group of large mammals that originated in the Early Miocene of Eurasia (ca. 19 Ma). While there is some consensus on key relationships among their members, on the basis of molecular- or morphology-based analyses, or combined approaches, many questions remain, and the bony labyrinth has shown considerable potential for the phylogenetics of this and other groups. Here we examine its shape in 29 species of living and fossil deer using 3D geometric morphometrics and cladistics. We clarify several issues of the origin and evolution of cervids. Our results give new age estimates at different nodes of the tree and provide for the first time a clear distinction of stem and crown Cervidae. We unambiguously attribute the fossil Euprox furcatus (13.8 Ma) to crown Cervidae, pushing back the origin of crown deer to (at least) 4 Ma. Furthermore, we show that Capreolinae are more variable in bony labyrinth shape than Cervinae and confirm for the first time the monophyly of the Old World Capreolinae (including the Chinese water deer Hydropotes ) based on morphological characters only. Finally, we provide evidence to support the sister group relationship of Megaloceros giganteus with the fallow deer Dama .
Ruminant inner ear shape records 35 million years of neutral evolution
Extrinsic and intrinsic factors impact diversity. On deep-time scales, the extrinsic impact of climate and geology are crucial, but poorly understood. Here, we use the inner ear morphology of ruminant artiodactyls to test for a deep-time correlation between a low adaptive anatomical structure and both extrinsic and intrinsic variables. We apply geometric morphometric analyses in a phylogenetic frame to X-ray computed tomographic data from 191 ruminant species. Contrasting results across ruminant clades show that neutral evolutionary processes over time may strongly influence the evolution of inner ear morphology. Extant, ecologically diversified clades increase their evolutionary rate with decreasing Cenozoic global temperatures. Evolutionary rate peaks with the colonization of new continents. Simultaneously, ecologically restricted clades show declining or unchanged rates. These results suggest that both climate and paleogeography produced heterogeneous environments, which likely facilitated Cervidae and Bovidae diversification and exemplifies the effect of extrinsic and intrinsic factors on evolution in ruminants. External ecological interactions and intrinsic biological parameters affect evolutionary pathways and animal diversity. Here, the authors use ruminant inner ear morphology to investigate patterns of diversity through 33 million years, finding clade-dependent climate and paleogeographic trends.
Zebrafish (Danio rerio) larvae as a predictive model to study gentamicin-induced structural alterations of the kidney
Nephrotoxicity is an important drug safety aspect to be assessed during drug discovery and development. To study renal toxicity, in vitro cell-based assays are often used. Unfortunately, translating the results of such cell assays to vertebrates including human remains challenging. Therefore, we aim to evaluate whether zebrafish larvae (ZFL) could serve as a vertebrate screening model to detect gentamicin-induced changes of kidney glomeruli and proximal tubules. To validate the model, we compared the results of ZFL with those obtained from kidney biopsies of gentamicin-treated mice. We used transgenic zebrafish lines expressing enhanced green fluorescent proteins in the glomerulus to visualize glomerular damage. Synchrotron radiation-based computed tomography (SRμCT) is a label-free approach providing three-dimensional representations of renal structures with micrometre resolution. Clinically used gentamicin concentrations induce nephrotoxicity and affect glomerular and proximal tubular morphology. Findings were confirmed in mice and ZFL. There was a strong correlation between fluorescent signals in ZFL, SRμCT- derived descriptors of glomerular and proximal tubular morphology and the histological analysis of mouse kidney biopsies. A combination of SRμCT and confocal microscopy provides unprecedented insights into anatomical structures of the zebrafish kidney. Based on our findings, we suggest to use ZFL as a predictive vertebrate screening model to study drug-induced nephrotoxicity and to bridge the gap between cell culture-based test systems and experiments in mammals.
Bioarchaeological investigations of the princely grave at Helmsdorf attesting to the violent death of an Early Bronze Age leader
The Helmsdorf “princely” tomb, excavated at the beginning of the twentieth century, is one of the most important archaeological discoveries dating from the Early Bronze Age in central Germany. In addition to the burial inventory, which points to an elevated social position of the deceased, a number of highly fragmented skeletal remains were preserved. Forensic anthropological investigation identified three distinctive bone defects, the surfaces of which were macromorphologically and microscopically examined in greater detail. Micro-CT analyses were also carried out. The results of all examinations suggested that the defects represented three perimortem injuries. The wound morphology was indicative of the use of a bladed weapon. The combination of injuries and their locations supported the assumption of a targeted use of force to kill. A comparison of Early Bronze Age weapons and tools with the bone lesions led to the identification of a type of weapon possibly used in the attack.
Impact of increasing morphological information by micro-CT scanning on the phylogenetic placement of Darwin wasps (Hymenoptera, Ichneumonidae) in amber
The correct interpretation of fossils and their reliable taxonomic placements are fundamental for understanding the evolutionary history of biodiversity. Amber inclusions often preserve more morphological information than compression fossils, but are often partially hidden or distorted, which can impede taxonomic identification. Here, we studied four new fossil species of Darwin wasps from Baltic and Dominican amber, using micro computed tomography (micro-CT) scans and 3D reconstructions to accurately interpret and increase the availability of morphological information. We then infer their taxonomic placement in a Bayesian phylogenetic analysis by combining morphological and molecular data of extant and fossil Darwin wasps and evaluate the impact and usefulness of the additional information from micro-CT scanning. The results show that although we gained significant morphological information from micro-CT scanning, especially concerning measurements and hidden dorsal and ventral structures, this did not impact subfamily-level placement for any of the four fossils. However, micro-CT scanning improved the precision of fossil placements at the genus level, which might be key in future dating and diversification analyses. Finally, we describe the four new fossil species as Rhyssa gulliveri sp. nov. in Rhyssinae , Triclistus levii sp. nov. in Metopiinae, Firkantus freddykruegeri gen. et. sp. nov. in Pimplinae and Magnocula sarcophaga gen. et sp. nov. in Phygadeuontinae. The first two species are the first known representatives of the subfamilies Rhyssinae and Metopiinae in amber.