Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
98 result(s) for "Schulze, E.D"
Sort by:
Ungulate browsing causes species loss in deciduous forests independent of community dynamics and silvicultural management in Central and Southeastern Europe
Grid-based inventories of 1,924 deciduous forests plots in Germany and 4,775 in Romania were used to investigate tree species composition as affected by browsing and grazing under different forest management (rotation forestry, selectively cut forest, protected forest). At regional scale, the loss of tree species in the dominant layer was between 52 to 67% in Germany and of 10 to 30% in Romania, with largest effects in protected nature reserves in Germany. At plot level, only 50% (Germany) to 54% (Romania) of canopy species were found in the regeneration layer with a height of 1.5 m. Browsing was influenced by the proportion of Fagus in the regenerating trees in Germany, and by stand density, basal area, and management in both regions. Structural equation modeling explained 11 to 26% of the variance in species loss based on the fresh loss of the terminal bud in the winter prior to the inventory work (one season browsing). Browsing (and grazing in Romania) is shown to be a significant cause of species loss across both countries and all management types. Potential cascading effects on other organisms of deciduous forest ecosystems are discussed. We conclude that the present hunting practices that support overabundant ungulate populations constitute a major threat to the biodiversity of deciduous forests in Germany and Romania and to other places with similar ungulate management, and that changes my only be possible by modernizing the legal framework of hunting.
HLA-DM captures partially empty HLA-DR molecules for catalyzed removal of peptide
HLA-DM activity ensures that only high-affinity peptides are displayed on MHC class II molecules. Wucherpfennig and colleagues show that interaction of HLA-DR with the N terminus of bound peptides determines susceptibility to HLA-DM. The mechanisms of HLA-DM-catalyzed peptide exchange remain uncertain. Here we found that all stages of the interaction of HLA-DM with HLA-DR were dependent on the occupancy state of the peptide-binding groove. High-affinity peptides were protected from removal by HLA-DM through two mechanisms: peptide binding induced the dissociation of a long-lived complex of empty HLA-DR and HLA-DM, and high-affinity HLA-DR–peptide complexes bound HLA-DM only very slowly. Nonbinding covalent HLA-DR–peptide complexes were converted into efficient HLA-DM binders after truncation of an N-terminal peptide segment that emptied the P1 pocket and disrupted conserved hydrogen bonds to HLA-DR. HLA-DM thus binds only to HLA-DR conformers in which a critical part of the binding site is already vacant because of spontaneous peptide motion.
Sustainable forest management of Natura 2000 sites: a case study from a private forest in the Romanian Southern Carpathians
Biodiversity and forest management are analyzed for a 500 ha privately owned forest within the Natura 2000 area “ROSCI0122 Muntii Fagaras”. Habitat types and indicator species are identified to measure environmental quality. Working towards an integrated approach to conservation, a range of options that will result in sustainable forest management are then considered. For beech forests light heterogeneity emerges as a crucial management target to ensure tree species richness and structural diversity as a basis for saving indicator species such as Morimus funereus, Cucujus cinnaberinus, Bolitophagus reticulatus and Xestobium austriacum. For spruce forests thinning over a broad range of diameters and maintenance of veteran trees would provide habitats for indicator species such asOlisthaerus substriatus. The populations of a number of bird species would be increased by strip-harvesting slopes: species such as Tetrao urogallus, Bonasia bonasia and Ficedula parva prefer forest margins. Steep slopes, and the areas around springs and watercourses, as well as rock faces, should remain unmanaged. Future management should start with a grid-based inventory to create an objective database of forest structure and life. An example is presented for high-elevation spruce forest. The inventory should quantify the variations in diameter, height and volume of trees per unit area. Such data would allow the advanced planning of forest operations. We discuss a wide range of administrative and organizational changes; changes that are needed for the sustainable forest management of the vast close-to-natural forests of the Muntii Fagaras, the maintenance of the Nardusgrasslands and the protection of wetland vegetation around springs and streams in this Natura 2000-area. 
Air pollution and forest decline in a spruce (Picea abies) forest
Symptoms of forest decline of spruce in Europe range from needle yellowing and loss to tree and stand mortality, In a study area in northeast Bavaria, West Germany, where forest decline was initially detected, exposure to high concentrations of gaseous pollutants, SO2, NO2, and ozone has had no long-lasting direct effect on needles, and pathogens have only been secondary agents. Deposition of sulfur, nitrate, and ammonium, however, have significantly modified plant nutrition and soil chemistry. Spruce roots apparently take up ammonium rather than nitrate with an antagonistic effect on uptake of Mg. Nitrate left in the soil solution is leached together with sulfate to ground water, accelerating soil acidification and decreasing Ca/Al and Mg/Al ratios in the soil solution. Soil solution chemistry affects root development, and water and nutrient uptake. Had all nutrients become equally deficient, spruce trees probably could have adjusted by retarding their growth. However, canopy uptake of atmospheric nitrogen in addition to root uptake stimulated growth and caused a nitrogen to cation imbalance to develop; this imbalance resulted in the decline symptoms
Europe-wide reduction in primary productivity caused by the heat and drought in 2003
After the heatwave The European heatwave in the summer of 2003 was probably the hottest in the region since AD 1500. Its immediate effects are well documented: the Earth Policy Institute has estimated that it caused at least 35,000 deaths. Now the longer-term effects are beginning to emerge. Based on measurements of ecosystem CO 2 flux, radiation absorption by plants, crop yields and a model simulating the terrestrial biosphere, a multinational team of researchers has found that during July and August 2003, 500 million tonnes of carbon escaped from the forests and fields across Europe as a result of extreme heat and drought. The model results and historical data suggest that this dramatic fall in primary productivity is unprecedented during the past century. If the incidence of extreme droughts like this were to increase, temperate ecosystems could become carbon sources with the potential to accelerate global warming, as has been anticipated for the tropics. Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration 1 , 2 . But although severe regional heatwaves may become more frequent in a changing climate 3 , 4 , their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model 5 to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr -1 ) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration 6 . Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes 1 , 2 .
Sampling forest tree regeneration with a transect approach
A new transect approach for sampling forest tree regeneration is developed with the aim to minimize the amount of field measurements, and to produce an accurate estimation of tree species composition and density independent of tree height. This approach is based on the “probability proportional to size” (PPS) theory to assess heterogeneous vegetation. This new method is compared with other approaches to assess forest regeneration based on simulated and measured, real data. The main result is that the transect approach requires about 50% of the time to assess stand density as compared to the plot approach, due to the fact that only 25% of the tree individuals are measured. In addition, tall members of the regeneration are counted with equal probability as small members. This is not the case in the plot approach. The evenness is 0.1 to 0.2 units larger in the transect by PPS than in the plot approach, which means that the plot approach shows a more homogenous regeneration layer than the PPS approach, even though the stand densities and height distributions are similar. The species diversity is variable in both approaches and needs further investigations.
Carbon accumulation in European forests
European forests are intensively exploited for wood products, yet they also form a sink for carbon. European forest inventories, available for the past 50 years, can be combined with timber harvest statistics to assess changes in this carbon sink. Analysis of these data sets between 1950 and 2000 from the EU-15 countries excluding Luxembourg, plus Norway and Switzerland, reveals that there is a tight relationship between increases in forest biomass and forest ecosystem productivity but timber harvests grew more slowly. Encouragingly, the environmental conditions in combination with the type of silviculture that has been developed over the past 50 years can efficiently sequester carbon on timescales of decades, while maintaining forests that meet the demand for wood. However, a return to using wood as biofuel and hence shorter rotations in forestry could cancel out the benefits of carbon storage over the past five decades. European forests are intensively exploited for wood products, yet they are also a potential sink for carbon. European forest inventories combined with timber harvest statistics from sixteen European countries show that between 1950 and 2000 forest biomass increased faster than the amount of timber harvests. Silviculture, which has developed over the past 50 years, can efficiently sequester carbon on timescales of decades, while maintaining forests that meet the demand for wood.
An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods
We determine the net land to atmosphere flux of carbon in Russia, including Ukraine, Belarus and Kazakhstan, using inventory-based, eddy covariance, and inversion methods. Our high boundary estimate is −342 Tg C yr−1 from the eddy covariance method, and this is close to the upper bounds of the inventory-based Land Ecosystem Assessment and inverse models estimates. A lower boundary estimate is provided at −1350 Tg C yr−1 from the inversion models. The average of the three methods is −613.5 Tg C yr−1. The methane emission is estimated separately at 41.4 Tg C yr−1. These three methods agree well within their respective error bounds. There is thus good consistency between bottom-up and top-down methods. The forests of Russia primarily cause the net atmosphere to land flux (−692 Tg C yr−1 from the LEA. It remains however remarkable that the three methods provide such close estimates (−615, −662, −554 Tg C yr–1) for net biome production (NBP), given the inherent uncertainties in all of the approaches. The lack of recent forest inventories, the few eddy covariance sites and associated uncertainty with upscaling and undersampling of concentrations for the inversions are among the prime causes of the uncertainty. The dynamic global vegetation models (DGVMs) suggest a much lower uptake at −91 Tg C yr−1, and we argue that this is caused by a high estimate of heterotrophic respiration compared to other methods.
Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions
Most inverse atmospheric models report considerable uptake of carbon dioxide in Europe's terrestrial biosphere. In contrast, carbon stocks in terrestrial ecosystems increase at a much smaller rate, with carbon gains in forests and grassland soils almost being offset by carbon losses from cropland and peat soils. Accounting for non-carbon dioxide carbon transfers that are not detected by the atmospheric models and for carbon dioxide fluxes bypassing the ecosystem carbon stocks considerably reduces the gap between the small carbon-stock changes and the larger carbon dioxide uptake estimated by atmospheric models. The remaining difference could be because of missing components in the stock-change approach, as well as the large uncertainty in both methods. With the use of the corrected atmosphere- and land-based estimates as a dual constraint, we estimate a net carbon sink between 135 and 205 teragrams per year in Europe's terrestrial biosphere, the equivalent of 7 to 12% of the 1995 anthropogenic carbon emissions.
A global budget for fine root biomass, surface area, and nutrient contents
Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global distributions for fine root biomass, length, and surface area with depth in the soil, and global estimates of nutrient pools in fine roots. Calculated root surface area is almost always greater than leaf area, more than an order of magnitude so in grasslands. The average C:N:P ratio in living fine roots is 450:11:1, and global fine root carbon is more than 5% of all carbon contained in the atmosphere. Assuming conservatively that fine roots turn over once per year, they represent 33% of global annual net primary productivity.