Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Schulze, Wiebke Manuela"
Sort by:
Structural basis for mutually exclusive co-transcriptional nuclear cap-binding complexes with either NELF-E or ARS2
2017
Pol II transcribes diverse classes of RNAs that need to be directed into the appropriate nuclear maturation pathway. All nascent Pol II transcripts are 5′-capped and the cap is immediately sequestered by the nuclear cap-binding complex (CBC). Mutually exclusive interactions of CBC with different partner proteins have been implicated in transcript fate determination. Here, we characterise the direct interactions between CBC and NELF-E, a subunit of the negative elongation factor complex, ARS2 and PHAX. Our biochemical and crystal structure results show that the homologous C-terminal peptides of NELF-E and ARS2 bind identically to CBC and in each case the affinity is enhanced when CBC is bound to a cap analogue. Furthermore, whereas PHAX forms a complex with CBC and ARS2, NELF-E binding to CBC is incompatible with PHAX binding. We thus define two mutually exclusive complexes CBC–NELF–E and CBC–ARS2–PHAX, which likely act in respectively earlier and later phases of transcription.
The nuclear cap-binding complex (CBC) binds to the 5′-cap structure of Pol II transcripts. Here, the authors give structural insights into CBC-mediated transcript processing and show that CBC forms mutual exclusive complexes with NELF and ARS2, which might act in earlier and later phases of transcription, respectively.
Journal Article
Structural analysis of human ARS2 as a platform for co-transcriptional RNA sorting
by
Rettel, Mandy
,
Schulze, Wiebke Manuela
,
Cusack, Stephen
in
631/337/1645
,
631/45/612/1230
,
631/535/1266
2018
ARS2 is a highly conserved metazoan protein involved in numerous aspects of nuclear RNA metabolism. As a direct partner of the nuclear cap-binding complex (CBC), it mediates interactions with diverse RNA processing and transport machineries in a transcript-dependent manner. Here, we present the human ARS2 crystal structure, which exhibits similarities and metazoan-specific differences to the plant homologue SERRATE, most notably an additional RRM domain. We present biochemical, biophysical and cellular interactome data comparing wild type and mutant ARS2 that identify regions critical for interactions with FLASH (involved in histone mRNA biogenesis), NCBP3 (a putative cap-binding protein involved in mRNA export) and single-stranded RNA. We show that FLASH and NCBP3 have overlapping binding sites on ARS2 and that CBC–ARS2–NCBP3 form a ternary complex that is mutually exclusive with CBC–ARS–PHAX (involved in snRNA export). Our results support that mutually exclusive higher-order CBC–ARS2 complexes are critical in determining Pol II transcript fate.
Arsenic resistance protein 2 (ARS2) plays an important role in nuclear RNA metabolism and interacts with the nuclear cap-binding complex (CBC). Here the authors present the human ARS2 structure and identify regions important for its interactions with binding partners supporting that mutually exclusive higher order CBC-ARS2 complexes are formed.
Journal Article
RIP2 filament formation is required for NOD2 dependent NF-κB signalling
by
Malet, Helene
,
Desfosses, Ambroise
,
Sachse, Carsten
in
101/28
,
631/250/262/2106/2517
,
631/535/1258/1259
2018
Activation of the innate immune pattern recognition receptor NOD2 by the bacterial muramyl-dipeptide peptidoglycan fragment triggers recruitment of the downstream adaptor kinase RIP2, eventually leading to NF-κB activation and proinflammatory cytokine production. Here we show that full-length RIP2 can form long filaments mediated by its caspase recruitment domain (CARD), in common with other innate immune adaptor proteins. We further show that the NOD2 tandem CARDs bind to one end of the RIP2 CARD filament, suggesting a mechanism for polar filament nucleation by activated NOD2. We combine X-ray crystallography, solid-state NMR and high-resolution cryo-electron microscopy to determine the atomic structure of the helical RIP2 CARD filament, which reveals the intermolecular interactions that stabilize the assembly. Using structure-guided mutagenesis, we demonstrate the importance of RIP2 polymerization for the activation of NF-κB signalling by NOD2. Our results could be of use to develop new pharmacological strategies to treat inflammatory diseases characterised by aberrant NOD2 signalling.
Binding of bacterial peptidoglycan muramyl dipeptides induces NOD2 activation and signalling via the downstream adaptor kinase RIP2. Here the authors show that RIP2 forms filaments via its CARD domain, analyse the structure of the CARD filaments and demonstrate the requirement of RIP2 polymerisation for the activation of NF-κB by NOD2.
Journal Article
Author Correction: Structural analysis of human ARS2 as a platform for co-transcriptional RNA sorting
by
Rettel, Mandy
,
Schulze, Wiebke Manuela
,
Cusack, Stephen
in
631/337/1645
,
631/45/612/1230
,
631/535/1266
2018
The previously published version of this Article contained an error in Figure 1. In panel d, the Arabidopsis SERRATE protein was incorrectly labelled ‘Human SERRATE’ and should have been labelled ‘SERRATE’. The error has been corrected in both the PDF and HTML versions of the Article.
Journal Article
NCBP3 is a productive mRNP component
by
Schmid, Manfred
,
Lacava, John
,
Dou, Yuhui
in
DNA-directed RNA polymerase
,
Molecular Biology
,
Nuclear transport
2020
The nuclear Cap Binding Complex (CBC), consisting of Nuclear Cap Binding Protein 1 (NCBP1) and 2 (NCBP2), associates with the nascent 5'cap of RNA polymerase II transcripts and impacts RNA fate decisions. Recently, the C17orf85 protein, also called NCBP3, was suggested to form an alternative CBC by replacing NCBP2. However, applying protein-protein interaction screening of NCBP1, 2 and 3, we find that the interaction profile of NCBP3 is distinct. Whereas NCBP1 and 2 identify known CBC interactors, NCBP3 primarily interacts with components of the Exon Junction Complex (EJC) and the TRanscription and EXport (TREX) complex. NCBP3-EJC association in vitro and in vivo requires EJC core integrity and the in vivo RNA binding profiles of EJC and NCBP3 overlap. We further show that NCBP3 competes with the RNA degradation factor ZC3H18 for binding CBC-bound transcripts, and that NCBP3 positively impacts the nuclear export of polyadenylated RNAs and the expression of large multi-exonic transcripts. Collectively, our results place NCBP3 with the EJC and TREX complexes in supporting the productive fate of mRNA. Competing Interest Statement The authors have declared no competing interest.