Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
52 result(s) for "Schumacher, Jakob"
Sort by:
COVID-19 isolation and quarantine orders in Berlin-Reinickendorf (Germany): How many, how long and to whom?
Isolating COVID-19 cases and quarantining their close contacts can prevent COVID-19 transmissions but also inflict harm. We analysed isolation and quarantine orders by the local public health agency in Berlin-Reinickendorf (Germany) and their dependence on the recommendations by the Robert Koch Institute, the national public health institute. Between 3 March 2020 and 18 December 2021 the local public health agency ordered 24 603 isolations (9.2 per 100 inhabitants) and 45 014 quarantines (17 per 100 inhabitants) in a population of 266 123. The mean contacts per case was 1.9. More days of quarantine per 100 inhabitants were ordered for children than for adults: 4.1 for children aged 0-6, 5.2 for children aged 7-17, 0.9 for adults aged 18-64 and 0.3 for senior citizens aged 65-110. The mean duration for isolation orders was 10.2 and for quarantine orders 8.2 days. We calculated a delay of 4 days between contact and quarantine order. 3484 contact persons were in quarantine when they developed an infection. This represents 8% of all individuals in quarantine and 14% of those in isolation. Our study quantifies isolation and quarantine orders, shows that children had been ordered to quarantine more than adults and that there were fewer school days lost to isolation or quarantine as compared to school closures. Our results indicate that the recommendations of the Robert Koch Institute had an influence on isolation and quarantine duration as well as contact identification and that the local public health agency was not able to provide rigorous contact tracing, as the mean number of contacts was lower than the mean number of contacts per person known from literature. Additionally, a considerable portion of the population underwent isolation or quarantine, with a notable number of cases emerging during the quarantine period.
Participatory, Virologic, and Wastewater Surveillance Data to Assess Underestimation of COVID-19 Incidence, Germany, 2020–2024
Using participatory, virologic, and wastewater surveillance systems, we estimated when and to what extent reported data of adult COVID-19 cases underestimated COVID-19 incidence in Germany. We also examined how case underestimation evolved over time. Our findings highlight how community-based surveillance systems can complement official notification systems for respiratory disease dynamics.
Timeliness in the German surveillance system for infectious diseases: Amendment of the infection protection act in 2013 decreased local reporting time to 1 day
Time needed to report surveillance data within the public health service delays public health actions. The amendment to the infection protection act (IfSG) from 29 March 2013 requires local and state public health agencies to report surveillance data within one working day instead of one week. We analysed factors associated with reporting time and evaluated the IfSG amendment. Local reporting time is the time between date of notification and date of export to the state public health agency and state reporting time is time between date of arrival at the state public health agency and the date of export. We selected cases reported between 28 March 2012 and 28 March 2014. We calculated the median local and state reporting time, stratified by potentially influential factors, computed a negative binominal regression model and assessed quality and workload parameters. Before the IfSG amendment the median local reporting time was 4 days and 1 day afterwards. The state reporting time was 0 days before and after. Influential factors are the individual local public health agency, the notified disease, the notification software and the day of the week. Data quality and workload parameters did not change. The IfSG amendment has decreased local reporting time, no relevant loss of data quality or identifiable workload-increase could be detected. State reporting time is negligible. We recommend efforts to harmonise practices of local public health agencies including the exclusive use of software with fully compatible interfaces.
Epidemic curves made easy using the R package incidence version 1; peer review: 1 approved, 2 approved with reservations
The epidemiological curve (epicurve) is one of the simplest yet most useful tools used by field epidemiologists, modellers, and decision makers for assessing the dynamics of infectious disease epidemics. Here, we present the free, open-source package incidence for the R programming language, which allows users to easily compute, handle, and visualise epicurves from unaggregated linelist data. This package was built in accordance with the development guidelines of the R Epidemics Consortium (RECON), which aim to ensure robustness and reliability through extensive automated testing, documentation, and good coding practices. As such, it fills an important gap in the toolbox for outbreak analytics using the R software, and provides a solid building block for further developments in infectious disease modelling. incidence is available from https://www.repidemicsconsortium.org/incidence.
Comparative assessment of combined concentration and extraction methods for Influenza A and B virus detection in wastewater
Influenza, caused by Influenza A and B viruses, represents a significant global health burden due to recurrent seasonal epidemics and the risk of pandemics. To gauge the large volume of seasonal influenza cases, it may be helpful to complement classical surveillance systems with additional approaches such as wastewater-based epidemiology (WBE), which can aid in the early trend assessment of seasonal epidemics. WBE has emerged as a promising tool for population-level surveillance, enabling the detection of viral nucleic acids in wastewater and offering unique advantages over individual-based surveillance. This study evaluates the performance of different combinations of virus concentration (i.e., PEG precipitation, centrifugal filtration, and silica membrane filtration) together with two distinct RNA extraction methods for the detection of Influenza A and B viruses in wastewater. Composite samples from four wastewater treatment plants in North Germany were analyzed using precipitation, filtration, and automated extraction protocols. Method performance for six combinations was evaluated by quantitative recovery of viral RNA and a spike-and-recovery experiment. Recovery efficiencies were determined from controlled spiking experiments, which provide a standardised method of comparison but may not fully reflect the complexity of real wastewater samples, in which viral genomes may be fragmented and associated with solids. The combination of PureYield™ filtration and Maxwell ® RSC extraction (PYC/EX1) consistently demonstrated the highest recovery rates for both Influenza virus A and B, achieving recovery efficiencies of up to 44.4% and 76.4%, respectively. This method also enabled reliable detection of low viral loads, which is critical for an early detection of rising incidence. Our findings demonstrate the importance of rigorous method evaluation to optimize WBE for influenza surveillance. By providing robust, sensitive, and reproducible protocols, this study highlights the potential of WBE to improve public health preparedness, enables timely interventions and reduces the spread of influenza viruses within communities.
COVID-19 isolation and quarantine orders in Berlin-Reinickendorf
Isolating COVID-19 cases and quarantining their close contacts can prevent COVID-19 transmissions but also inflict harm. We analysed isolation and quarantine orders by the local public health agency in Berlin-Reinickendorf (Germany) and their dependence on the recommendations by the Robert Koch Institute, the national public health institute. Between 3 March 2020 and 18 December 2021 the local public health agency ordered 24 603 isolations (9.2 per 100 inhabitants) and 45 014 quarantines (17 per 100 inhabitants) in a population of 266 123. The mean contacts per case was 1.9. More days of quarantine per 100 inhabitants were ordered for children than for adults: 4.1 for children aged 0-6, 5.2 for children aged 7-17, 0.9 for adults aged 18-64 and 0.3 for senior citizens aged 65-110. The mean duration for isolation orders was 10.2 and for quarantine orders 8.2 days. We calculated a delay of 4 days between contact and quarantine order. 3484 contact persons were in quarantine when they developed an infection. This represents 8% of all individuals in quarantine and 14% of those in isolation. Our study quantifies isolation and quarantine orders, shows that children had been ordered to quarantine more than adults and that there were fewer school days lost to isolation or quarantine as compared to school closures. Our results indicate that the recommendations of the Robert Koch Institute had an influence on isolation and quarantine duration as well as contact identification and that the local public health agency was not able to provide rigorous contact tracing, as the mean number of contacts was lower than the mean number of contacts per person known from literature. Additionally, a considerable portion of the population underwent isolation or quarantine, with a notable number of cases emerging during the quarantine period.
COVID-19 isolation and quarantine orders in Berlin-Reinickendorf (Germany): How many, how long and to whom?
Isolating COVID-19 cases and quarantining their close contacts can prevent COVID-19 transmissions but also inflict harm. We analysed isolation and quarantine orders by the local public health agency in Berlin-Reinickendorf (Germany) and their dependence on the recommendations by the Robert Koch Institute, the national public health institute. Between 3 March 2020 and 18 December 2021 the local public health agency ordered 24 603 isolations (9.2 per 100 inhabitants) and 45 014 quarantines (17 per 100 inhabitants) in a population of 266 123. The mean contacts per case was 1.9. More days of quarantine per 100 inhabitants were ordered for children than for adults: 4.1 for children aged 0-6, 5.2 for children aged 7-17, 0.9 for adults aged 18-64 and 0.3 for senior citizens aged 65-110. The mean duration for isolation orders was 10.2 and for quarantine orders 8.2 days. We calculated a delay of 4 days between contact and quarantine order. 3484 contact persons were in quarantine when they developed an infection. This represents 8% of all individuals in quarantine and 14% of those in isolation. Our study quantifies isolation and quarantine orders, shows that children had been ordered to quarantine more than adults and that there were fewer school days lost to isolation or quarantine as compared to school closures. Our results indicate that the recommendations of the Robert Koch Institute had an influence on isolation and quarantine duration as well as contact identification and that the local public health agency was not able to provide rigorous contact tracing, as the mean number of contacts was lower than the mean number of contacts per person known from literature. Additionally, a considerable portion of the population underwent isolation or quarantine, with a notable number of cases emerging during the quarantine period.
A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions
In Germany, local health departments are responsible for surveillance of the current pandemic situation. One of their major tasks is to monitor infected persons. For instance, the direct contacts of infectious persons at group meetings have to be traced and potentially quarantined. Such quarantine requirements may be revoked, when all contact persons obtain a negative polymerase chain reaction (PCR) test result. However, contact tracing and testing is time-consuming, costly and not always feasible. In this work, we present a statistical model for the probability that no transmission of COVID-19 occurred given an arbitrary number of negative test results among contact persons. Hereby, the time-dependent sensitivity and specificity of the PCR test are taken into account. We employ a parametric Bayesian model which combines an adaptable Beta-Binomial prior and two likelihood components in a novel fashion. This is illustrated for group events in German school classes. The first evaluation on a real-world dataset showed that our approach can support important quarantine decisions with the goal to achieve a better balance between necessary containment of the pandemic and preservation of social and economic life. Future work will focus on further refinement and evaluation of quarantine decisions based on our statistical model.
Source attribution of community-acquired cases of Legionnaires’ disease–results from the German LeTriWa study; Berlin, 2016–2019
Sources of infection of most cases of community-acquired Legionnaires' disease (CALD) are unknown. Identification of sources of infection of CALD. Berlin; December 2016-May 2019. Adult cases of CALD reported to district health authorities and consenting to the study; age and hospital matched controls. Percentage of cases of CALD with attributed source of infection. Analysis of secondary patient samples for monoclonal antibody (MAb) type (and sequence type); questionnaire-based interviews, analysis of standard household water samples for Legionella concentration followed by MAb (and sequence) typing of Legionella pneumophila serogroup 1 (Lp1) isolates; among cases taking of additional water samples to identify the infectious source as appropriate; recruitment of control persons for comparison of exposure history and Legionella in standard household water samples. For each case an appraisal matrix was filled in to attribute any of three source types (external (non-residence) source, residential non-drinking water (RnDW) source (not directly from drinking water outlet), residential drinking water (RDW) as source) using three evidence types (microbiological results, cluster evidence, analytical-comparative evidence (using added information from controls)). Inclusion of 111 study cases and 202 controls. Median age of cases was 67 years (range 25-93 years), 74 (67%) were male. Among 65 patients with urine typable for MAb type we found a MAb 3/1-positive strain in all of them. Compared to controls being a case was not associated with a higher Legionella concentration in standard household water samples, however, the presence of a MAb 3/1-positive strain was significantly associated (odds ratio (OR) = 4.9, 95% confidence interval (CI) 1.7 to 11). Thus, a source was attributed by microbiological evidence if it contained a MAb 3/1-positive strain. A source was attributed by cluster evidence if at least two cases were exposed to the same source. Statistically significant general source types were attributed by calculating the population attributable risk (analytical-comparative evidence). We identified an external source in 16 (14%) cases, and RDW as source in 28 (25%). Wearing inadequately disinfected dentures was the only RnDW source significantly associated with cases (OR = 3.2, 95% CI 1.3 to 7.8) and led to an additional 8% of cases with source attribution, for a total of 48% of cases attributed. Using the appraisal matrix we attributed almost half of all cases of CALD to an infectious source, predominantly RDW. Risk for LD seems to be conferred primarily by the type of Legionella rather than the amount. Dentures as a new infectious source needs further, in particular, integrated microbiological, molecular and epidemiological confirmation.
Nerve injury converts Schwann cells in a persisting repair state in human neuroma tissue
Peripheral nerve injury (PNI) induces neuroma formation at the severed nerve stump resulting in impaired nerve regeneration and functional recovery in patients. So far, molecular mechanisms and cell types present in the neuroma impeding on regeneration have only sparsely been analyzed. Herein we compare resected human neuroma tissue with intact donor nerves from the same patient. Neuroma from several post-injury timepoints (1-13 months) were included, thereby allowing for temporal correlation with molecular and cellular processes. We observed reduced axonal area and percentage of myelin producing Schwann cells (SCs) compared to intact nerves. However, total SOX10 positive SC numbers were comparable. Notably, markers for SCs in a repair mode including c-JUN and SHH (sonic hedgehog) and SC proliferation (pH3) were upregulated in neuroma, suggesting presence of SCs in repair rather than differentiated status. In agreement, in neuroma, pro-regenerative markers such as phosphorylated i.e. activated CREB (pCREB), ATF3, GAP43 and SCG10 were upregulated. Neuroma tissue was infiltrated by several types of macrophages. Finally, when taken in culture, neuroma SCs were indistinguishable from controls SCs with regard to proliferation and morphology. However, cultured neuroma SCs retained a different molecular signature from control SCs including increased inflammation and reduced gene expression for differentiation markers such as myelin genes. In summary, human neuroma tissue consists of SCs with a repair status and is infiltrated strongly by several types of macrophages.