Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Schweizer, Rena M"
Sort by:
Genome Sequencing Highlights the Dynamic Early History of Dogs
by
Boyko, Adam R.
,
Lee, Clarence
,
Harkins, Timothy T.
in
ADN mitocondrial
,
Amylases - genetics
,
Animal populations
2014
To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.
Journal Article
Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice
by
Velotta, Jonathan P.
,
Ivy, Catherine M.
,
Bradburd, Gideon S.
in
Adaptation
,
Adaptation, Physiological - genetics
,
Adrenal glands
2019
Evolutionary adaptation to extreme environments often requires coordinated changes in multiple intersecting physiological pathways, but how such multi-trait adaptation occurs remains unresolved. Transcription factors, which regulate the expression of many genes and can simultaneously alter multiple phenotypes, may be common targets of selection if the benefits of induced changes outweigh the costs of negative pleiotropic effects. We combined complimentary population genetic analyses and physiological experiments in North American deer mice (Peromyscus maniculatus) to examine links between genetic variation in transcription factors that coordinate physiological responses to hypoxia (hypoxia-inducible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive subunit of HIF-2α, exhibited extreme allele frequency differences between highland and lowland populations. Broader geographic sampling confirmed that Epas1 genotype varied predictably with altitude throughout the western US. We then discovered that Epas1 genotype influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF targets and genes involved in catecholamine signaling) in the heart and adrenal gland. Finally, we used a demographically-informed selection scan to show that Epas1 variants have experienced a history of spatially varying selection, suggesting that differences in cardiovascular function and gene regulation contribute to high-altitude adaptation. Our results suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice and provide general insights into the role that highly pleiotropic transcription factors may play in the process of environmental adaptation.
Journal Article
Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands
by
Campbell-Staton, Shane C.
,
Rochette, Nicolas C.
,
Maayan, Inbar
in
38/91
,
631/181
,
631/208/191
2020
Only recently have we begun to understand the ecological and evolutionary effects of urbanization on species, with studies revealing drastic impacts on community composition, gene flow, behaviour, morphology and physiology. However, our understanding of how adaptive evolution allows species to persist, and even thrive, in urban landscapes is still nascent. Here, we examine phenotypic, genomic and regulatory impacts of urbanization on a widespread lizard, the Puerto Rican crested anole (
Anolis cristatellus
). We find that urban lizards endure higher environmental temperatures and display greater heat tolerance than their forest counterparts. A single non-synonymous polymorphism within a protein synthesis gene (
RARS
) is associated with heat tolerance plasticity within urban heat islands and displays parallel signatures of selection in cities. Additionally, we identify groups of differentially expressed genes between habitats showing elevated genetic divergence in multiple urban–forest comparisons. These genes display evidence of adaptive regulatory evolution within cities and disproportionately cluster within regulatory modules associated with heat tolerance. This study provides evidence of temperature-mediated selection in urban heat islands with repeatable impacts on physiological evolution at multiple levels of biological hierarchy.
Analysing phenotypic and genomic differences between urban and rural lizards, the authors identify a single non-synonymous polymorphism associated with heat tolerance plasticity that may explain how urban lizards can endure higher temperatures compared to those in forests.
Journal Article
Broad Concordance in the Spatial Distribution of Adaptive and Neutral Genetic Variation across an Elevational Gradient in Deer Mice
by
Cheviron, Zachary A
,
Jones, Matthew R
,
Storz, Jay F
in
Adaptation, Physiological - genetics
,
Altitude
,
Analysis
2021
When species are continuously distributed across environmental gradients, the relative strength of selection and gene flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci. Determining whether adaptive genetic variation tends to be structured differently than neutral variation along environmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a combination of selection scans, genotype−environment associations, and geographic cline analyses, we found that a large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.
Journal Article
De Novo Mutation Rate Estimation in Wolves of Known Pedigree
2019
Knowledge of mutation rates is crucial for calibrating population genetics models of demographic history in units of years. However, mutation rates remain challenging to estimate because of the need to identify extremely rare events. We estimated the nuclear mutation rate in wolves by identifying de novo mutations in a pedigree of seven wolves. Putative de novo mutations were discovered by whole-genome sequencing and were verified by Sanger sequencing of parents and offspring. Using stringent filters and an estimate of the false negative rate in the remaining observable genome, we obtain an estimate of ∼4.5 × 10−9 per base pair per generation and provide conservative bounds between 2.6 × 10−9 and 7.1 × 10−9. Although our estimate is consistent with recent mutation rate estimates from ancient DNA (4.0 × 10−9 and 3.0–4.5 × 10−9), it suggests a wider possible range. We also examined the consequences of our rate and the accompanying interval for dating several critical events in canid demographic history. For example, applying our full range of rates to coalescent models of dog and wolf demographic history implies a wide set of possible divergence times between the ancestral populations of dogs and extant Eurasian wolves (16,000–64,000 years ago) although our point estimate indicates a date between 25,000 and 33,000 years ago. Aside from one study in mice, ours provides the only direct mammalian mutation rate outside of primates and is likely to be vital to future investigations of mutation rate evolution.
Journal Article
Repeated Shifts in Sociality Are Associated With Fine-tuning of Highly Conserved and Lineage-Specific Enhancers in a Socially Flexible Bee
2024
Abstract
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L. albipes genome from 3 social and 3 solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1,182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is associated with the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior.
Journal Article
Adaptive Shifts in Gene Regulation Underlie a Developmental Delay in Thermogenesis in High-Altitude Deer Mice
by
Schweizer, Rena M
,
Robertson, Cayleih E
,
McClelland, Grant B
in
Adipose tissue
,
Adipose tissue (brown)
,
Altitude
2020
Aerobic performance is tied to fitness as it influences an animal’s ability to find food, escape predators, or survive extreme conditions. At high altitude, where low O2 availability and persistent cold prevail, maximum metabolic heat production (thermogenesis) is an aerobic performance trait that is closely linked to survival. Understanding how thermogenesis evolves to enhance survival at high altitude will yield insight into the links between physiology, performance, and fitness. Recent work in deer mice (Peromyscus maniculatus) has shown that adult mice native to high altitude have higher thermogenic capacities under hypoxia compared with lowland conspecifics, but that developing high-altitude pups delay the onset of thermogenesis. This finding suggests that natural selection on thermogenic capacity varies across life stages. To determine the mechanistic cause of this ontogenetic delay, we analyzed the transcriptomes of thermoeffector organs—brown adipose tissue and skeletal muscle—in developing deer mice native to low and high altitude. We demonstrate that the developmental delay in thermogenesis is associated with adaptive shifts in the expression of genes involved in nervous system development, fuel/O2 supply, and oxidative metabolism pathways. Our results demonstrate that selection has modified the developmental trajectory of the thermoregulatory system at high altitude and has done so by acting on the regulatory systems that control the maturation of thermoeffector tissues. We suggest that the cold and hypoxic conditions of high altitude force a resource allocation tradeoff, whereby limited energy is allocated to developmental processes such as growth, versus active thermogenesis, during early development.
Journal Article
Natural Selection and Origin of a Melanistic Allele in North American Gray Wolves
by
Smith, Douglas W
,
Thalmann, Olaf
,
Green, Richard E
in
Alleles
,
Animal populations
,
Camouflage
2018
Pigmentation is often used to understand how natural selection affects genetic variation in wild populations since it can have a simple genetic basis, and can affect a variety of fitness-related traits (e.g., camouflage, thermoregulation, and sexual display). In gray wolves, the K locus, a β-defensin gene, causes black coat color via a dominantly inherited KB allele. The allele is derived from dog-wolf hybridization and is at high frequency in North American wolf populations. We designed a DNA capture array to probe the geographic origin, age, and number of introgression events of the KB allele in a panel of 331 wolves and 20 dogs. We found low diversity in KB, but not ancestral ky, wolf haplotypes consistent with a selective sweep of the black haplotype across North America. Further, North American wolf KB haplotypes are monophyletic, suggesting that a single adaptive introgression from dogs to wolves most likely occurred in the Northwest Territories or Yukon. We use a new analytical approach to date the origin of the KB allele in Yukon wolves to between 1,598 and 7,248 years ago, suggesting that introgression with early Native American dogs was the source. Using population genetic simulations, we show that the K locus is undergoing natural selection in four wolf populations. We find evidence for balancing selection, specifically in Yellowstone wolves, which could be a result of selection for enhanced immunity in response to distemper. With these data, we demonstrate how the spread of an adaptive variant may have occurred across a species’ geographic range.
Journal Article
Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs
by
Boyko, Adam R.
,
Lee, Clarence
,
Harkins, Timothy T.
in
Animals
,
Behavior
,
Biology and Life Sciences
2016
Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.
Journal Article
Conservation genomics illuminates the adaptive uniqueness of North American gray wolves
by
Schweizer, Rena M
,
Wayne, Robert K
,
Hendricks, Sarah A
in
Admixtures
,
Animal populations
,
Anthropogenic factors
2019
The resolution of conservation genetic analyses has been limited until recently due to technological and computational challenges associated with genotyping multiple loci at once. In this review, we focus on how the development of high-throughput genotyping methods have enabled conservation genomics studies of wolves in North America. The gray wolf (Canis lupus) historically had a Holarctic distribution across widely varying environments, yet during the early twentieth century many populations declined due to direct persecution and other anthropogenic disturbances. First, we discuss genetic substructure and adaptive uniqueness among genetically and environmentally defined wolf ecotypes. Second, we focus on the new conservation implications revealed by studies having increased genomic resolution of the dynamics of reintroduced and re-established wolves, specifically Mexican and Pacific Northwest wolves. Mexican wolves, a distinct subspecies of North American wolf that inhabit a small area within the southwestern U.S. and Mexico, remain endangered despite decades since a reintroduction program began. How biologists and management agencies use scientific data to define the historical range of Mexican wolves will be critical to future reintroduction efforts. In the Pacific Northwest, admixture occurs between the distinct and declining coastal wolf ecotype and the more abundant reintroduced interior wolves. If coastal wolves obtain protection, then the Pacific Northwest wolves may also warrant protection. Therefore, more precise policies are needed for the management of admixed populations when one source is protected. We recommend that future conservation efforts should provide full protection for distinct ecotypes, support scientifically rigorous definitions of historical range to inform restoration, and enhance the legal status of admixed populations.
Journal Article