Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
82 result(s) for "Sciagrà, Roberto"
Sort by:
Artificial Intelligence in Nuclear Cardiology
Background/Objectives: Artificial Intelligence (AI) is becoming increasingly important in Medicine. The aim of this review is to summarize its use in the field of Nuclear Cardiology. Methods: First, we provide a short description of how AI works. Then we performed a review of the literature focusing on the articles in which AI is used for image interpretation for diagnostic or prognostic purposes. Results: AI has been applied according to various approaches for both diagnosis and prognosis. The achieved gains have been so far relatively limited as compared to traditional methodologies. However, promising results have been reported, including interesting perspectives for the explainability of AI results and their potential integration in clinical routine. Conclusions: AI is soon going to play an important role in Nuclear Cardiology, but further improvements are needed to reach significant gains in terms of diagnostic accuracy, and prospective studies on its prognostic capabilities are still lacking. Furthermore, several important issues must be solved, such as availability and feasibility within the processing workflow, explainability, liability, and ethics of its application in clinical decision-making.
EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging
The use of cardiac PET, and in particular of quantitative myocardial perfusion PET, has been growing during the last years, because scanners are becoming widely available and because several studies have convincingly demonstrated the advantages of this imaging approach. Therefore, there is a need of determining the procedural modalities for performing high-quality studies and obtaining from this demanding technique the most in terms of both measurement reliability and clinical data. Although the field is rapidly evolving, with progresses in hardware and software, and the near perspective of new tracers, the EANM Cardiovascular Committee found it reasonable and useful to expose in an updated text the state of the art of quantitative myocardial perfusion PET, in order to establish an effective use of this modality and to help implementing it on a wider basis. Together with the many steps necessary for the correct execution of quantitative measurements, the importance of a multiparametric approach and of a comprehensive and clinically useful report have been stressed.
Prediction of functional recovery after primary PCI using the estimate of myocardial salvage in gated SPECT early after acute myocardial infarction
PurposePrimary percutaneous coronary intervention (PCI) in acute myocardial infarction (AMI) aims to achieve myocardial salvage (MS). Because the reference method for measuring MS requires myocardial perfusion imaging (MPI) after tracer injection before PCI, alternative approaches have been proposed, but none has gained wide acceptance. Gated SPECT MPI can assess infarct size (IS), but can also show myocardial stunning. Thus, we compared functional and perfusion abnormalities early after AMI to estimate MS, and to predict left ventricular ejection fraction (LVEF) recovery at follow-up.MethodsWe studied 120 patients with AMI. Gated SPECT MPI was performed early (before hospital discharge) and at 6 months after AMI to measure IS, MS and functional outcome. MS was defined as the difference between the number of segments with abnormal thickening (i.e. the stunned area or area at risk) and the number of segments with abnormal perfusion (i.e. the final IS), expressed as a percentage of the total number of segments in the AHA model. LVEF was calculated using quantitative gated SPECT.ResultsThe area at risk was 40 ± 25%, IS was 17.3 ± 16% and MS was 22 ± 19%. Early LVEF was 46.6 ± 11.6% and late LVEF was 51.4 ± 11.6%, with 54 patients showing at least an increase in LVEF of more than 5 units. ROC analysis showed that MS was able to predict LVEF recovery with an area under the curve (AUC) of 0.79 (p < 0.0001), and using a cut off >23% detected LVEF recovery with 74% sensitivity and 71% specificity. Conversely, IS was associated with an AUC 0.53 (not significant).ConclusionMS assessed by a single early gated SPECT MPI study can accurately predict LVEF evolution after primary PCI for AMI.
Role of quantitative myocardial positron emission tomography for risk stratification in patients with hypertrophic cardiomyopathy: a 2016 reappraisal
Aims Myocardial blood flow <1.1 mL/min/g following dipyridamole (Dip-MBF) assessed by positron emission tomography (PET) was identified in 2003 as an important outcome predictor in hypertrophic cardiomyopathy (HCM), based on scans performed in the 90s. However, such extreme Dip-MBF impairment is rarely observed in contemporary cohorts. We, therefore, reassessed the Dip-MBF threshold defining high-risk HCM patients. Methods Dip-MBF was measured using 13 N-ammonia in 100 HCM consecutive patients, prospectively enrolled and followed for 4.0 ± 2.2 years. Outcome was assessed based on tertiles of Dip-MBF. The study end-point was a combination of cardiovascular death, progression to severe functional limitation, cardioembolic stroke, life-threatening ventricular arrhythmias. Results Global Dip-MBF was 1.95 ± 0.85, ranging from 0.7 to 5.9 mL/min/g. Dip-MBF tertile cut-off values were: 0.73 to 1.53 mL/min/g (lowest), 1.54 to 2.13 mL/min/g (middle), and 2.14 to 5.89 mL/min/g (highest). During follow-up, lowest tertile Dip-MBF was associated with sevenfold independent risk of unfavorable outcome compared to the other two tertiles. Dip-MBF 1.35 mL/min/g was identified as the best threshold for outcome prediction. Regional perfusion analysis showed that all cardiac deaths (n = 4) occurred in patients in the lowest tertile of lateral wall Dip-MBF (≤1.72 mL/min/g); septal Dip-MBF was not predictive. Conclusions Dip-MBF confirms its role as potent predictor of outcome in HCM. However, the threshold for prediction in a contemporary cohort is higher than that reported in earlier studies. Dip-MBF impairment in the lateral wall, possibly reflecting diffuse disease extending to non-hypertrophic regions, is a sensitive predictor of mortality in HCM.
The expanding role of left ventricular functional assessment using gated myocardial perfusion SPECT: the supporting actor is stealing the scene
Gating of single-photon emission computed tomography (SPECT) has significantly improved the reliability and diagnostic accuracy of myocardial perfusion imaging. The functional parameters derived from this technique, mainly left ventricular volumes and ejection fraction, have been demonstrated to be accurate and reproducible. They are able to increase the detection of severe and extensive coronary artery disease and show a significant incremental prognostic power over perfusion abnormalities. Therefore, the importance given to gated SPECT functional data has progressively grown. This circumstance has further expanded the indications for myocardial perfusion imaging and strengthened its position among the different imaging modalities. Moreover, several studies show that the evaluation of ventricular function may have a leading part in justifying the execution of perfusion scintigraphy in various clinical conditions. Aim of this review is to describe this evolution of gated SPECT functional assessment from a supporting rank with respect to perfusion, to a main actor position in the field of cardiac imaging.
Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man
BackgroundThis study examined whether measuring myocardial blood flow (MBF) in the sub-endocardial (SEN) and sub-epicardial (SEP) layers of the left ventricular myocardium using 13NH3 positron emission tomography (PET) and an automated procedure gives reasonable results in patients with known or suspected coronary artery disease (CAD).MethodsResting and stress 13NH3 dynamic PET were performed in 70 patients. Using ≥ 70% diameter stenosis in invasive coronary angiography (ICA) to identify significant CAD, we examined the diagnostic value of SEN- and SEP-MBF, and coronary flow reserve (CFR) vs. the corresponding conventional data averaged on the whole wall thickness.ResultsICA demonstrated 36 patients with significant CAD. Their global stress average [1.61 (1.26, 1.87) mL·min−1·g−1], SEN [1.39 (1.2, 1.59) mL·min−1·g−1] and SEP [1.22 (0.96, 1.44) mL·min−1·g−1] MBF were significantly lower than in the 34 no-CAD patients: 2.05 (1.76, 2.52), 1.72 (1.53, 1.89) and 1.46 (1.23, 1.89) mL·min−1·g−1, respectively, all P < .005. In the 60 CAD vs. the 150 non-CAD territories, stress average MBF was 1.52 (1.10, 1.83) vs. 2.06 (1.69, 2.48) mL·min−1·g−1, SEN-MBF 1.33 (1.02, 1.58) vs. 1.66 (1.35, 1.93) mL·min−1·g−1, and SEP-MBF 1.07 (0.80, 1.29) vs. 1.40 (1.12, 1.69) mL·min−1·g−1, respectively, all P < .05. Using receiver operating characteristics analysis for the presence of significant CAD, the areas under the curve (AUC) were all significant (P < .0001 vs. AUC = 0.5) and similar: stress average MBF = 0.79, SEN-MBF = 0.75, and SEP-MBF = 0.73. AUC was 0.77 for the average CFR, 0.75 for SEN, and 0.70 for SEP CFR. The stress transmural perfusion gradient (TPG) AUC (0.51) was not significant. However, stress TPG was significantly lower in segments subtended by totally occluded arteries vs. those subtended by sub-total stenoses: 1.10 (0.86, 1.33) vs. 1.24 (0.98, 1.56), respectively, P < .005.ConclusionAutomatic assessment of SEN- and SEP-MBF (and CFR) using 13NH3 PET gives reasonable results that are in good agreement with the conventional average whole wall thickness data. Further studies are needed to examine the utility of layer measurements such as in patients with hibernating myocardium or microvascular disease.
Detection of infarct size safety threshold for left ventricular ejection fraction impairment in acute myocardial infarction successfully treated with primary percutaneous coronary intervention
Purpose In acute myocardial infarction (AMI) treated by primary percutaneous coronary intervention (PCI), there is a direct relationship between myocardial damage and consequent left ventricular (LV) functional impairment. It is however unclear whether there is a safety threshold below which infarct size does not significantly affect LV ejection fraction (EF). The aim of this study was to evaluate the relationship between infarct size and LVEF in AMI patients treated by successful PCI using a specific statistical approach to identify a possible safety threshold. Methods Among patients with recent AMI submitted to perfusion gated single photon emission computed tomography (SPECT) to define the infarct size, the data of 427 subjects with sizable infarct size were considered. The relationship between infarct size and LVEF was analysed using a simple segmented regression (SSR) model and an iterative algorithm based on robust least squares (RLS) for parameter estimation. Results The RLS algorithm detected two break points in the SSR model, set at infarct size values of 11.0 and 51.5 %. Because the slope coefficients of the two extreme segments of the regression line were not significant, by constraining such segments to zero slope in the SSR model, the lower break point was identified at infarct size = 8 % and the upper one at 45 %. Conclusion Using a rigorous statistical approach, it is possible to demonstrate that below a threshold of 8 % the infarct size apparently does not affect the LVEF and therefore a safety threshold could be set at this value. Furthermore, the same analysis suggests that the relationship between infarct size and LVEF impairment is lost for an infarct size > 45 %.
Spatial Relationship Between Coronary Microvascular Dysfunction and Delayed Contrast Enhancement in Patients with Hypertrophic Cardiomyopathy
To clarify the spatial relationship between coronary microvascular dysfunction and myocardial fibrosis in hypertrophic cardiomyopathy (HCM), we compared the measurement of hyperemic myocardial blood flow (hMBF) by PET with the extent of delayed contrast enhancement (DCE) detected by MRI. In 34 patients with HCM, PET was performed using (13)N-labeled ammonia during hyperemia induced by intravenous dipyridamole. DCE and systolic thickening were assessed by MRI. Left ventricular myocardial segments were classified as with DCE, either transmural (DCE-T) or nontransmural (DCE-NT), and without DCE, either contiguous to DCE segments (NoDCE-C) or remote from them (NoDCE-R). In the group with DCE, hMBF was significantly lower than in the group without DCE (1.81 +/- 0.94 vs. 2.13 +/- 1.11 mL/min/g; P < 0.001). DCE-T segments had lower hMBF than did DCE-NT segments (1.43 +/- 0.52 vs. 1.91 +/- 1 mL/min/g, P < 0.001). Similarly, NoDCE-C segments had lower hMBF than did NoDCE-R (1.98 +/- 1.10 vs. 2.29 +/- 1.10 mL/min/g, P < 0.01) and had no significant difference from DCE-NT segments. Severe coronary microvascular dysfunction (hMBF in the lowest tertile of all segments) was more prevalent among NoDCE-C than NoDCE-R segments (33% vs. 24%, P < 0.05). Systolic thickening was inversely correlated with percentage transmurality of DCE (Spearman rho = -0.37, P < 0.0001) and directly correlated with hMBF (Spearman rho = 0.20, P < 0.0001). In myocardial segments exhibiting DCE, hMBF is reduced. DCE extent is inversely correlated and hMBF directly correlated with systolic thickening. In segments without DCE but contiguous to DCE areas, hMBF is significantly lower than in those remote from DCE and is similar to the value obtained in nontransmural DCE segments. These results suggest that increasing degrees of coronary microvascular dysfunction might play a causative role for myocardial fibrosis in HCM.