Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
716
result(s) for
"Scott, Mark G H"
Sort by:
Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression
by
Ly, Stevenson
,
Beautrait, Alexandre
,
Paradis, Justine S.
in
Amino Acid Sequence
,
Animals
,
Arrestins - metabolism
2015
MAPKs are activated in response to G protein-coupled receptor (GPCR) stimulation and play essential roles in regulating cellular processes downstream of these receptors. However, very little is known about the reciprocal effect of MAPK activation on GPCRs. To investigate possible crosstalk between the MAPK and GPCRs, we assessed the effect of ERK1/2 on the activity of several GPCR family members. We found that ERK1/2 activation leads to a reduction in the steady-state cell-surface expression of many GPCRs because of their intracellular sequestration. This subcellular redistribution resulted in a global dampening of cell responsiveness, as illustrated by reduced ligand-mediated G-protein activation and second-messenger generation as well as blunted GPCR kinases and β-arrestin recruitment. This ERK1/2-mediated regulatory process was observed for GPCRs that can interact with β-arrestins, such as type-2 vasopressin, type-1 angiotensin, and CXC type-4 chemokine receptors, but not for the prostaglandin F receptor that cannot interact with β-arrestin, implicating this scaffolding protein in the receptor’s subcellular redistribution. Complementation experiments in mouse embryonic fibroblasts lacking β-arrestins combined with in vitro kinase assays revealed that β-arrestin-2 phosphorylation on Ser14 and Thr276 is essential for the ERK1/2-promoted GPCR sequestration. This previously unidentified regulatory mechanism was observed after constitutive activation as well as after receptor tyrosine kinase- or GPCR-mediated activation of ERK1/2, suggesting that it is a central node in the tonic regulation of cell responsiveness to GPCR stimulation, acting both as an effector and a negative regulator.
Journal Article
Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway
by
Le Guelte, Armelle
,
Dwyer, Julie
,
Chneiweiss, Hervé
in
Blotting, Western
,
Brain
,
Brain - blood supply
2011
Glioma stem‐cells are associated with the brain vasculature. However, the way in which this vascular niche regulates stem‐cell renewal and fate remains unclear. Here, we show that factors emanating from brain endothelial cells positively control the expansion of long‐term glioblastoma stem‐like cells. We find that both pharmacological inhibition of and RNA interference with the mammalian target of rapamycin (mTOR) pathway reduce their spheroid growth. Conversely, the endothelial secretome is sufficient to promote this mTOR‐dependent survival. Thus, interfering with endothelial signals might present opportunities to identify treatments that selectively target malignant stem‐cell niches.
Endothelial cells provide a permissive microenvironment for glioblastoma stem‐like cell (GSC) identity. Secreted factors from brain endothelial cells are shown here to be sufficient for the propagation and mTOR‐dependent survival of GSC in culture.
Journal Article
Control of CCR5 Cell-Surface Targeting by the PRAF2 Gatekeeper
2023
The cell-surface targeting of neo-synthesized G protein-coupled receptors (GPCRs) involves the recruitment of receptors into COPII vesicles budding at endoplasmic reticulum exit sites (ERESs). This process is regulated for some GPCRs by escort proteins, which facilitate their export, or by gatekeepers that retain the receptors in the ER. PRAF2, an ER-resident four trans- membrane domain protein with cytoplasmic extremities, operates as a gatekeeper for the GB1 protomer of the heterodimeric GABAB receptor, interacting with a tandem di-leucine/RXR retention motif in the carboxyterminal tail of GB1. PRAF2 was also reported to interact in a two-hybrid screen with a peptide corresponding to the carboxyterminal tail of the chemokine receptor CCR5 despite the absence of RXR motifs in its sequence. Using a bioluminescence resonance energy transfer (BRET)-based subcellular localization system, we found that PRAF2 inhibits, in a concentration-dependent manner, the plasma membrane export of CCR5. BRET-based proximity assays and Co-IP experiments demonstrated that PRAF2/CCR5 interaction does not require the presence of a receptor carboxyterminal tail and involves instead the transmembrane domains of both proteins. The mutation of the potential di-leucine/RXR motif contained in the third intracellular loop of CCR5 does not affect PRAF2-mediated retention. It instead impairs the cell-surface export of CCR5 by inhibiting CCR5’s interaction with its private escort protein, CD4. PRAF2 and CD4 thus display opposite roles on the cell-surface export of CCR5, with PRAF2 inhibiting and CD4 promoting this process, likely operating at the level of CCR5 recruitment into COPII vesicles, which leave the ER.
Journal Article
β-arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53
2007
β-arrestins (β-arrs), two ubiquitous proteins involved in serpentine heptahelical receptor regulation and signaling, form constitutive homo- and heterooligomers stabilized by inositol 1,2,3,4,5,6-hexakisphosphate (IP6). Monomeric β-arrs are believed to interact with receptors after agonist activation, and therefore, β-arr oligomers have been proposed to represent a resting biologically inactive state. In contrast to this, we report here that the interaction with and subsequent titration out of the nucleus of the protooncogene Mdm2 specifically require β-arr2 oligomers together with the previously characterized nucleocytoplasmic shuttling of β-arr2. Mutation of the IP6-binding sites impair oligomerization, reduce interaction with Mdm2, and inhibit p53-dependent antiproliferative effects of β-arr2, whereas the competence for receptor regulation and signaling is maintained. These observations suggest that the intracellular concentration of β-arr2 oligomers might control cell survival and proliferation.
Journal Article
PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex
2017
PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42. The protein PTEN helps to organize cells in the body to form complex structures. In particular, it collects signals from a cells’ surroundings and changes where cells divide so new cells are produced in the right places. The control of cell division by PTEN is also thought to help limit the progression and spread of cancer. PTEN can interact with another protein called β-Arrestin1, which behaves as a so-called scaffolding protein – in other words, one that helps groups of proteins to interact with each other. β-Arrestin1 has been found to control cell division via a series of other proteins, including ARHGAP21 and Cdc42. The relationship between PTEN and these other proteins in dividing cells is still not fully understood. Javadi, Deevi et al. studied PTEN in human cells grown in the laboratory to show that a part of PTEN known as the C2 domain allows it to help organize cells by moving β-Arrestin1 to the outer edge of the cell – the cell membrane. This relocation allows β-Arrestin1 to interact with ARHGAP21 and Cdc42, and control cell division. Active Cdc42 changes the orientation of cell division, allowing cells to organize into single layers of regular cells and similar tightly controlled structures. Further experiments revealed that these proteins are important to form tubes inside the glands of the gut. The C2 region of PTEN also helps to detect signals carried by fat molecules in the cell membrane, so these results provide a direct link between signaling and cell organization via PTEN. The work of Javadi, Deevi et al. provides new understanding of how PTEN links nutrient availability to cell organization during development and may also lead to new insights into the role of PTEN in limiting the growth of tumors.
Journal Article
Pharmacological chaperone-rescued cystic fibrosis CFTR-F508del mutant overcomes PRAF2-gated access to endoplasmic reticulum exit sites
by
Chevalier, Benoit
,
Chuon, Cérina
,
Hinzpeter, Alexandre
in
Binding sites
,
Biochemistry
,
Biochemistry, Molecular Biology
2022
The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABA
B
-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.
Journal Article
Targeting of β-Arrestin2 to the Centrosome and Primary Cilium: Role in Cell Proliferation Control
by
Saunier, Sophie
,
Boularan, Cedric
,
Scott, Mark G. H.
in
14-3-3 protein
,
14-3-3 Proteins - metabolism
,
Animals
2008
The primary cilium is a sensory organelle generated from the centrosome in quiescent cells and found at the surface of most cell types, from where it controls important physiological processes. Specific sets of membrane proteins involved in sensing the extracellular milieu are concentrated within cilia, including G protein coupled receptors (GPCRs). Most GPCRs are regulated by beta-arrestins, betaarr1 and betaarr2, which control both their signalling and endocytosis, suggesting that betaarrs may also function at primary cilium.
In cycling cells, betaarr2 was observed at the centrosome, at the proximal region of the centrioles, in a microtubule independent manner. However, betaarr2 did not appear to be involved in classical centrosome-associated functions. In quiescent cells, both in vitro and in vivo, betaarr2 was found at the basal body and axoneme of primary cilia. Interestingly, betaarr2 was found to interact and colocalize with 14-3-3 proteins and Kif3A, two proteins known to be involved in ciliogenesis and intraciliary transport. In addition, as suggested for other centrosome or cilia-associated proteins, betaarrs appear to control cell cycle progression. Indeed, cells lacking betaarr2 were unable to properly respond to serum starvation and formed less primary cilia in these conditions.
Our results show that betaarr2 is localized to the centrosome in cycling cells and to the primary cilium in quiescent cells, a feature shared with other proteins known to be involved in ciliogenesis or primary cilium function. Within cilia, betaarr2 may participate in the signaling of cilia-associated GPCRs and, therefore, in the sensory functions of this cell \"antenna\".
Journal Article
Beta-arrestins operate an on/off control switch for focal adhesion kinase activity
by
Scott, Mark G. H.
,
Kobayashi, Hiroyuki
,
Lambert, Mireille
in
Adaptor Protein Complex 2 - genetics
,
Adhesion
,
Angiotensin AT1 receptors
2020
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK–β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT
1A
R and subsequent translocation of the FAK–β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Journal Article
TRPV1 Activation Promotes β-arrestin2 Interaction with the Ribosomal Biogenesis Machinery in the Nucleolus: Implications for p53 Regulation and Neurite Outgrowth
by
Flynn, Robyn
,
Abdullah, Nasser
,
Defaye, Manon
in
Animals
,
beta-Arrestin 2 - metabolism
,
Biosynthesis
2021
Transient receptor potential vanilloids (TRPV1) are non-selective cation channels that sense and transduce inflammatory pain signals. We previously reported that activation of TRPV1 induced the translocation of β-arrestin2 (ARRB2) from the cytoplasm to the nucleus, raising questions about the functional role of ARRB2 in the nucleus. Here, we determined the ARRB2 nuclear signalosome by conducting a quantitative proteomic analysis of the nucleus-sequestered L395Q ARRB2 mutant, compared to the cytosolic wild-type ARRB2 (WT ARRB2), in a heterologous expression system. We identified clusters of proteins that localize to the nucleolus and are involved in ribosomal biogenesis. Accordingly, L395Q ARRB2 or WT ARRB2 after capsaicin treatment were found to co-localize and interact with the nucleolar marker nucleophosmin (NPM1), treacle protein (TCOF1) and RNA polymerase I (POL I). We further investigated the role of nuclear ARRB2 signaling in regulating neuroplasticity. Using neuroblastoma (neuro2a) cells and dorsal root ganglia (DRG) neurons, we found that L395Q ARRB2 mutant increased POL I activity, inhibited the tumor suppressorp53 (p53) level and caused a decrease in the outgrowth of neurites. Together, our results suggest that the activation of TRPV1 promotes the ARRB2-mediated regulation of ribosomal biogenesis in the nucleolus. The ARRB2-TCOF1-p53 checkpoint signaling pathway might be involved in regulating neurite outgrowth associated with pathological pain conditions.
Journal Article
Impaired nuclear PTEN function drives macrocephaly, lymphadenopathy and late-onset cancer in PTEN Hamartoma Tumour Syndrome
2025
PTEN Hamartoma Tumour Syndrome (PHTS), a rare disease caused by germline heterozygous PTEN mutations, is associated with multi-organ/tissue overgrowth, autism spectrum disorder and increased cancer risk. Phenotypic variability in PHTS is partly due to diverse PTEN mutations and the protein's multifaceted functions. PTEN is primarily a PIP3 phosphatase regulating PI3K/AKT signalling but also maintains chromosomal stability through nuclear functions such as double-strand (ds) DNA damage repair. Here we show that PTEN-R173C, a pathogenic variant frequently found in PHTS and somatic cancer, has elevated PIP3 phosphatase activity that effectively regulates canonical PI3K/AKT signalling. However, PTEN-R173C is unstable and excluded from the nucleus. We generated Pten+/R173C mice which developed few tumours during their lifetime, aligning with normal PI3K/AKT signalling. However, they exhibit lymphoid hyperplasia, macrocephaly and brain abnormalities, associated with impaired nuclear functions of PTEN-R173C, demonstrated by reduced dsDNA damage repair. Integrating PHTS patient data with our mouse-model, we propose that defective nuclear functions of PTEN variants can predict the onset of PHTS phenotypes, and that late-onset cancer in these individuals may arise from secondary genetic alterations, facilitated by compromised dsDNA repair.
Journal Article