Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
161
result(s) for
"Seabloom, Eric W."
Sort by:
Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils
by
Luis, Angela D.
,
Leff, Jonathan W.
,
Bullington, Lorinda S.
in
49/23
,
631/158/2453
,
631/158/853
2021
Ecosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but does not affect saprotrophs. Structural equation models suggest that responses are often indirect and primarily mediated by nutrient-induced shifts in plant communities. Nutrient addition also reduces co-occurrences within and among fungal guilds, which could have important consequences for belowground interactions. Focusing only on plots that received no nutrient addition, soil properties influence pathogen abundance globally, whereas plant community characteristics influence mutualists, and climate influence saprotrophs. We show consistent, guild-level responses that enhance our ability to predict shifts in soil function related to anthropogenic eutrophication, which can have longer-term consequences for plant communities.
Anthropogenic nutrient enrichment may drive shifts in soil microbial communities. Here, the authors analyse nitrogen and phosphorus addition effects on soil fungi in a distributed grassland experiment across four continents, finding promotion of pathogens, suppression of mutualists, and no shifts in saprotrophs.
Journal Article
Anthropogenic environmental changes affect ecosystem stability via biodiversity
by
Tilman, David
,
Reich5, Peter B.
,
Seabloom, Eric W.
in
Anthropogenic factors
,
Biodiversity
,
Biodiversity loss
2015
Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.
Journal Article
Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring
by
Ryabov, Alexey B.
,
Lewandowska, Aleksandra M.
,
Chase, Jonathan M.
in
anthropogenic activities
,
Assessments
,
Biodiversity
2018
1. Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is far from trivial, however, as recently documented by meta-analyses, which report little if any net change in local species richness through time. 2. Here, we summarise several limitations of species richness as a metric of biodiversity change and show that the expectation of directional species richness trends under changing conditions is invalid. Instead, we illustrate how a set of species turnover indices provide more information content regarding temporal trends in biodiversity, as they reflect how dominance and identity shift in communities over time. 3. We apply these metrics to three monitoring datasets representing different ecosystem types. In all datasets, nearly complete species turnover occurred, but this was disconnected from any species richness trends. Instead, turnover was strongly influenced by changes in species presence (identities) and dominance (abundances). We further show that these metrics can detect phases of strong compositional shifts in monitoring data and thus identify a different aspect of biodiversity change decoupled from species richness. 4. Synthesis and applications: Temporal trends in species richness are insufficient to capture key changes in biodiversity in changing environments. In fact, reductions in environmental quality can lead to transient increases in species richness if immigration or extinction has different temporal dynamics. Thus, biodiversity monitoring programmes need to go beyond analyses of trends in richness in favour of more meaningful assessments of biodiversity change.
Journal Article
Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe
by
McCulley, Rebecca L.
,
Jones, Stuart E.
,
Firn, Jennifer L.
in
Archaea
,
Archaea - physiology
,
Bacteria
2015
Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.
Journal Article
Stronger fertilization effects on aboveground versus belowground plant properties across nine U.S. grasslands
by
Keller, Adrienne B.
,
Blumenthal, Dana M.
,
DeLancey, Lang C.
in
aboveground biomass
,
anthropogenic activities
,
Anthropogenic factors
2023
Increased nutrient inputs due to anthropogenic activity are expected to increase primary productivity across terrestrial ecosystems, but changes in allocation aboveground versus belowground with nutrient addition have different implications for soil carbon (C) storage. Thus, given that roots are major contributors to soil C storage, understanding belowground net primary productivity (BNPP) and biomass responses to changes in nutrient availability is essential to predicting carbon–climate feedbacks in the context of interacting global environmental changes. To address this knowledge gap, we tested whether a decade of nitrogen (N) and phosphorus (P) fertilization consistently influenced aboveground and belowground biomass and productivity at nine grassland sites spanning a wide range of climatic and edaphic conditions in the continental United States. Fertilization effects were strong aboveground, with both N and P addition stimulating aboveground biomass at nearly all sites (by 30% and 36%, respectively, on average). P addition consistently increased root production (by 15% on average), whereas other belowground responses to fertilization were more variable, ranging from positive to negative across sites. Site-specific responses to P were not predicted by the measured covariates. Atmospheric N deposition mediated the effect of N fertilization on root biomass and turnover. Specifically, atmospheric N deposition was positively correlated with root turnover rates, and this relationship was amplified with N addition. Nitrogen addition increased root biomass at sites with low N deposition but decreased it at sites with high N deposition. Overall, these results suggest that the effects of nutrient supply on belowground plant properties are context dependent, particularly with regard to background N supply rates, demonstrating that site conditions must be considered when predicting how grassland ecosystems will respond to increased nutrient loading from anthropogenic activity.
Journal Article
Herbivory and nutrients shape grassland soil seed banks
by
Porath-Krause, Anita J.
,
Sullivan, Lauren L.
,
Bahamonde, Hector A.
in
631/158/2453
,
631/158/670
,
631/158/853
2023
Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.
Seed banks are reservoirs of plant diversity. This study shows that nutrient addition decreases diversity of grassland seed banks, increases their similarity to aboveground communities and interacts with aboveground herbivory to affect their abundance.
Journal Article
Floral Color and Family Drive Contrasting Plant–Pollinator Responses to Nutrient Enrichment
2025
Nutrient enrichment has decreased the diversity and abundance of wildflower species, raising questions about whether nutrient enrichment can further decrease the diversity and abundance of pollinators that rely on wildflowers. Whether the effects of nutrient enrichment on plant–pollinator interactions differ by nutrient type remains an open question. Moreover, plant family and flower color, two core axes of pollination niches, may further mediate how wildflowers and their pollinators respond to nutrient enrichment. We tested these questions using a nutrient addition experiment replicated at three grasslands in California, a global plant diversity hotspot. We found that adding nitrogen increased the floral abundance of Asteraceae, while decreasing that of Fabaceae, Geraniaceae, Iridaceae, and Euphorbiaceae. Adding phosphorus and potassium in the absence of nitrogen produced the opposite effects. Pollinator abundance and composition varied strongly by floral family, suggesting that these differing responses to nutrient addition by floral family may alter pollinator community composition. Nitrogen addition decreased the abundance of native blue, native green, and exotic pink flowers, while increasing the abundance of native and exotic yellow and exotic purple flowers. Consequently, nitrogen addition increased pollinator abundance on purple flowers, while decreasing pollinator abundance on pink flowers. Purple and yellow Asteraceae species, which increased under nitrogen enrichment, acted as core hubs in structuring the plant–pollinator network. Synthesis: Our findings suggest that the type of nutrient, plant family, and flower color modulate how plant–pollinator interactions respond to eutrophication. Floral taxonomic family and color mediated how plant–pollinator reactions respond to nutrient enrichment. Nitrogen enrichment increased yellow and purple Asteraceae flowers and decreased pink, blue, and green flowers in Geraniaceae, Fabaceae, and Iridaceae. These shifts in floral colors and traits altered pollinator composition.
Journal Article
Signatures of nutrient limitation and co-limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions
by
Seabloom, Eric W.
,
Ngai, Jacqueline T.
,
Cleland, Elsa E.
in
Aquatic ecosystems
,
Ecosystems
,
Editor's Choice
2015
Humans are modifying the availability of nutrients such as nitrogen (N) and phosphorus (P), and it is therefore important to understand how these nutrients, independently or in combination, influence the growth and nutrient content of primary producers. Using meta-analysis of 118 field and laboratory experiments in freshwater, marine and terrestrial ecosystems, we tested hypotheses about co-limitation of N and P by comparing the effects of adding N alone, P alone, and both N and P together on internal N (e.g. %N, C:N) and P (e.g. %P, C:P) concentrations in autotroph communities. In particular, we tested the following predictions. First, if only one nutrient was limiting, addition of that nutrient should decrease the concentration of the other nutrient, but addition of the non-limiting nutrient would have no effect on the internal concentration of the limiting nutrient. If community co-limitation was occurring then addition of either nutrient should result in a decrease in the internal concentration of the other nutrient. Community co-limitation could also result in no change – or even an increase – in N concentrations in response to P addition if P stimulated growth of N fixers. Finally, if biochemically dependent colimitation was occurring, addition of a limiting nutrient would not decrease, and could even increase, the concentration of the other, co-limited nutrient. We found no general evidence for the decrease in the internal concentration of one nutrient due to addition of another nutrient. The one exception to this overall pattern was marine systems, where N addition decreased internal P concentrations. In contrast, P addition increased internal N concentrations across all experiments, consistent with co-limitation. These results have important implications for understanding the roles that N and P play in controlling producer growth and internal nutrient accumulation as well as for managing the effects of nutrient enrichment in ecosystems.
Synthesis
On a global scale, humans have doubled nitrogen (N) inputs and quadrupled phosphorus (P) inputs relative to pre-industrial levels. N and P fertilization influences autotroph internal nutrient concentrations and ratios and thereby affects a variety of community and ecosystem processes, including decomposition and consumer population dynamics. It is therefore critical to understand the effects of nutrient additions on the growth and nutrient concentrations of primary producers. We used meta-analysis to evaluate the responses of autotroph internal N and P concentrations to additions of N, P, and N+P and make inferences about limitation and co-limitation of N and P across marine, terrestrial, and freshwater ecosystems. We found little evidence for single-nutrient limitation, highlighting the fact that multiple nutrients generally limit primary production.
Journal Article
The effect of diversity on disease reverses from dilution to amplification in a 22-year biodiversity × N × CO2 experiment
by
Seabloom, Eric W.
,
Strauss, Alexander T.
,
Borer, Elizabeth T.
in
631/158/1469
,
631/158/2453
,
631/158/853
2024
Plant disease often increases with N, decreases with CO
2
, and increases as biodiversity is lost (i.e., the dilution effect). Additionally, all these factors can indirectly alter disease by changing host biomass and hence density-dependent disease transmission. Yet over long periods of time as communities undergo compositional changes, these biomass-mediated pathways might fade, intensify, or even reverse in direction. Using a field experiment that has manipulated N, CO
2
, and species richness for over 20 years, we compared severity of a specialist rust fungus (
Puccinia andropogonis
) on its grass host (
Andropogon gerardii
) shortly after the experiment began (1999) and twenty years later (2019). Between these two sampling periods, two decades apart, we found that disease severity consistently increased with N and decreased with CO
2
. However, the relationship between diversity and disease reversed from a dilution effect in 1999 (more severe disease in monocultures) to an amplification effect in 2019 (more severe disease in mixtures). The best explanation for this reversal centered on host density (i.e., aboveground biomass), which was initially highest in monoculture, but became highest in mixtures two decades later. Thus, the diversity-disease pattern reversed, but disease consistently increased with host biomass. These results highlight the consistency of N and CO
2
as drivers of plant disease in the Anthropocene and emphasize the critical role of host biomass—despite potentially variable effects of diversity—for relationships between biodiversity and disease.
Journal Article
Invasion, competitive dominance, and resource use by exotic and native California grassland species
by
Seabloom, E.W
,
Reichman, O.J
,
Harpole, W.S
in
Annuals
,
Biological Sciences
,
botanical composition
2003
The dynamics of invasive species may depend on their abilities to compete for resources and exploit disturbances relative to the abilities of native species. We test this hypothesis and explore its implications for the restoration of native ecosystems in one of the most dramatic ecological invasions worldwide, the replacement of native perennial grasses by exotic annual grasses and forbs in 9.2 million hectares of California grasslands. The long-term persistence of these exotic annuals has been thought to imply that the exotics are superior competitors. However, seed-addition experiments in a southern California grassland revealed that native perennial species, which had lower requirements for deep soil water, soil nitrate, and light, were strong competitors, and they markedly depressed the abundance and fecundity of exotic annuals after overcoming recruitment limitations. Native species reinvaded exotic grasslands across experimentally imposed nitrogen, water, and disturbance gradients. Thus, exotic annuals are not superior competitors but rather may dominate because of prior disturbance and the low dispersal abilities and extreme current rarity of native perennials. If our results prove to be general, it may be feasible to restore native California grassland flora to at least parts of its former range.
Journal Article