Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Seabra, Amedea Barozzi"
Sort by:
Selective Antimicrobial Chitosan Films Incorporating Green-Synthesized Silver and Copper Oxide Nanoparticles for Acne Treatment
by
de Freitas, Carolina C.
,
da Silva, Leonardo Longuini
,
Nakazato, Gerson
in
Acne
,
Antiacne agents
,
Antibiotics
2025
Background/Objectives: Chitosan-based films incorporating green-synthesized silver nanoparticles AgNPs) or copper oxide nanoparticles (CuONPs) were developed to compare their selective antimicrobial action for topical applications. While AgNPs are known for broad-spectrum activity, this study hypothesized that CuONPs would exhibit superior, targeted efficacy against the acne-associated bacterium Cutibacterium acnes. Methods: Nanoparticles were synthesized using Camellia sinensis extract and characterized. Antimicrobial activity was evaluated using Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays. Chitosan films containing AgNPs or CuONPs were further tested for selective antimicrobial activity and fibroblast cytocompatibility. Results: AgNPs showed strong activity against Escherichia coli and Staphylococcus aureus (MIC = 15 µg/mL) but were less effective against C. acnes (MIC = 125 µg/mL). In contrast, CuONPs demonstrated selective efficacy against C. acnes (MIC = 62 µg/mL; MBC = 125 µg/mL). When incorporated into chitosan films, AgNPs@CHI inhibited E. coli (35 mm halo) and S. aureus (30 mm), whereas CuONPs@CHI were selectively effective against C. acnes (45 mm). All films preserved fibroblast viability above the 70% ISO 10993-5 threshold. Conclusions: CuONPs@CHI films validated selective anti-C. acnes performance, highlighting their promise for targeted anti-acne therapies, while AgNPs@CHI films served as effective broad-spectrum antimicrobial barriers.revealed that AgNPs were potent against Escherichia coli and Staphylococcus aureus (MIC = 15 µg/mL) but less effective against C. acnes (MIC = 125 µg/mL). Conversely, CuONPs demonstrated a marked selective advantage against C. acnes (MIC = 62 µg/mL; MBC = 125 µg/mL). When incorporated into chitosan films, AgNPs@CHI films inhibited E. coli (35 mm halo) and S. aureus (30 mm), whereas CuONPs@CHI films were selectively effective only against C. acnes (45 mm), confirming the targeted performance. All films maintained fibroblast viability above the 70% ISO 10993-5 cytotoxicity threshold. These findings validate the selective action of CuONPs@CHI films, positioning them as a promising biomaterial for targeted anti-acne therapies, while AgNPs@CHI films serve as effective broad-spectrum antimicrobial barriers.
Journal Article
Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery
by
Oliveira, Halley Caixeta
,
Pimenta, José Antonio
,
Lopes-Oliveira, Patrícia Juliana
in
631/449/1736
,
631/61/350/354
,
Acclimation
2019
Polymeric nanoparticles have emerged as carrier systems for molecules that release nitric oxide (NO), a free radical involved in plant stress responses. However, to date, nanoencapsulated NO donors have not been applied to plants under realistic field conditions. Here, we verified the effects of free and nanoencapsulated NO donor, S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), on growth, physiological and biochemical parameters of neotropical tree seedlings kept under full sunlight in the nursery for acclimation. S-nitroso-MSA incorporation into chitosan nanoparticles partially protected the NO donor from thermal and photochemical degradation. The application of nanoencapsulated S-nitroso-MSA in the substrate favoured the growth of seedlings of
Heliocarpus popayanensis
, a shade-intolerant tree. In contrast, free S-nitroso-MSA or nanoparticles containing non-nitrosated mercaptosuccinic acid reduced photosynthesis and seedling growth. Seedlings of
Cariniana estrellensis
, a shade-tolerant tree, did not have their photosynthesis and growth affected by any formulations, despite the increase of foliar S-nitrosothiol levels mainly induced by S-nitroso-MSA-loaded nanoparticles. These results suggest that depending on the tree species, nanoencapsulated NO donors can be used to improve seedling acclimation in the nursery.
Journal Article
Comparison of foliar spray and soil irrigation of biogenic CuO nanoparticles (NPs) on elemental uptake and accumulation in lettuce
by
Kohatsu, Marcio Yukihiro
,
Fincheira, Paola
,
Lange, Camila Neves
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Cadmium
2021
Nanoparticles (NPs) can be used in several ways in agriculture, including increasing production rates and improving nutritional values in plants. The present study aims to clarify how biogenic copper oxide nanoparticles (CuO NPs) applied by two routes of exposure (foliar spray and soil irrigation) affect the elemental uptake by lettuce. In vivo experiments using lettuce (
n
= 4) were performed with CuO NPs in comparison with copper salt (CuSO
4
), considering a final mass added of 20 mg of CuO per plant. The elemental composition of roots was mostly affected by the soil irrigation exposure for both Cu forms (NPs and salt). Neither Cu form added by soil irrigation was translocated to leaves. Copper concentration in leaves was mainly affected by foliar spray exposure for both Cu forms (NPs and salt). All Cu forms through foliar spray were sequestered in the leaves and no translocation to roots was observed. Foliar spray of CuO NPs caused no visual damage in leaves, resulted in less disturbance of elemental composition, and improved dry weight, number of leaves, CO
2
assimilation, and the levels of K, Na, S, Ag, Cd, Cr, Cu, and Zn in leaves without causing significant changes in daily intake of most elements, except for Cu. Although Cu concentration increased in leaves by foliar spray of CuO NPs, it remained safe for consumption.
Journal Article
Cytotoxicity towards Breast Cancer Cells of Pluronic F-127/Hyaluronic Acid Hydrogel Containing Nitric Oxide Donor and Silica Nanoparticles Loaded with Cisplatin
by
Seabra, Amedea Barozzi
,
de Melo Santana, Bianca
,
Gomes, Rafael Nunes
in
Breast cancer
,
breast cancer cells
,
Cancer
2022
The incorporation of both nitric oxide (NO) donor (S-nitrosoglutathione, GSNO) and silica nanoparticles loaded with cisplatin (SiO2@CisPt NPs) into a polymeric matrix represents a suitable approach to creating a drug-delivery system with sustained and localized drug release against tumor cells. Herein, we report the synthesis, characterization, and cytotoxicity evaluation of Pluronic F-127/hyaluronic acid hydrogel containing GSNO and SiO2@CisPt NPs against breast cancer cells. SiO2@CisPt NPs were successfully synthesized, revealing a spherical morphology with an average size of 158 ± 20 nm. Both GSNO and SiO2@CisPt NPs were incorporated into the thermoresponsive Pluronic/hyaluronic hydrogel for sustained and localized release of both NO and cisplatin. The kinetics of NO release from a hydrogel matrix revealed spontaneous and sustained release of NO at the millimolar range for 24 h. The MTT assay showed concentration-dependent cytotoxicity of the hydrogel. The combination of GSNO and SiO2@CisPt incorporated into a polymeric matrix decreased the cell viability 20% more than the hydrogel containing only GSNO or SiO2@CisPt. At 200 µg/mL, this combination led to a critical cell viability of 30%, indicating a synergistic effect between GSNO and SiO2@CisPt NPs in the hydrogel matrix, and, therefore, highlighting the potential application of this drug-delivery system in the field of biomedicine.
Journal Article
Characterization of the Oxidative Stress in Renal Ischemia/Reperfusion-Induced Cardiorenal Syndrome Type 3
by
De Angelis, Kátia
,
Pieretti, Joana Claudio
,
Neres-Santos, Raquel Silva
in
Analysis
,
Animals
,
Antioxidants
2020
In kidney disease (KD), several factors released into the bloodstream can induce a series of changes in the heart, leading to a wide variety of clinical situations called cardiorenal syndrome (CRS). Reactive oxygen species (ROS) play an important role in the signaling and progression of systemic inflammatory conditions, as observed in KD. The aim of the present study was to characterize the redox balance in renal ischemia/reperfusion-induced cardiac remodeling. C57BL/6 male mice were subjected to occlusion of the left renal pedicle, unilateral, for 60 min, followed by reperfusion for 8 and 15 days, respectively. The following redox balance components were evaluated: catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (FRAP), NADPH oxidase (NOX), nitric oxide synthase (NOS), hydrogen peroxide (H2O2), and the tissue bioavailability of nitric oxide (NO) such as S-nitrosothiol (RSNO) and nitrite (NO2−). The results indicated a process of renoprotection in both kidneys, indicated by the reduction of cellular damage and some oxidant agents. We also observed an increase in the activity of antioxidant enzymes, such as SOD, and an increase in NO bioavailability. In the heart, we noticed an increase in the activity of NOX and NOS, together with increased cell damage on day 8, followed by a reduction in protein damage on day 15. The present study concludes that the kidneys and heart undergo distinct processes of damage and repair at the analyzed times, since the heart is a secondary target of ischemic kidney injury. These results are important for a better understanding of the cellular mechanisms involved in CRS.
Journal Article
Enhanced Nitric Oxide Synthesis Through Nitrate Supply Improves Drought Tolerance of Sugarcane Plants
by
Prataviera, Paula Joyce Carrenho
,
Machado, Eduardo Caruso
,
Ribeiro, Rafael V.
in
Abiotic stress
,
Ammonium
,
Ascorbic acid
2020
Nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. Nitrate reductase (NR) not only mediates the reduction of NO
to NO
but also reduces NO
to NO, a relevant pathway for NO production in higher plants. Herein, we hypothesized that sugarcane plants supplied with more NO
as a source of N would produce more NO under water deficit. Such NO would reduce oxidative damage and favor photosynthetic metabolism and growth under water limiting conditions. Sugarcane plants were grown in nutrient solution and received the same amount of nitrogen, with varying nitrate:ammonium ratios (100:0 and 70:30). Plants were then grown under well-watered or water deficit conditions. Under water deficit, plants exhibited higher root [NO
] and [NO
] when supplied with 100% NO
. Accordingly, the same plants also showed higher root NR activity and root NO production. We also found higher photosynthetic rates and stomatal conductance in plants supplied with more NO
, which was associated with increased root growth. ROS accumulation was reduced due to increases in the activity of catalase in leaves and superoxide dismutase and ascorbate peroxidase in roots of plants supplied with 100% NO
and facing water deficit. Such positive responses to water deficit were offset when a NO scavenger was supplied to the plants, thus confirming that increases in leaf gas exchange and plant growth were induced by NO. Concluding, NO
supply is an interesting strategy for alleviating the negative effects of water deficit on sugarcane plants, increasing drought tolerance through enhanced NO production. Our data also provide insights on how plant nutrition could improve crop tolerance against abiotic stresses, such as drought.
Journal Article
Ionomic Profile of Rice Seedlings after Foliar Application of Selenium Nanoparticles
by
Lange, Camila Neves
,
Seabra, Amedea Barozzi
,
Freire, Bruna Moreira
in
Accumulation
,
Agriculture
,
agronomic biofortification
2024
Nanotechnology has been increasingly used in plant sciences, with engineered nanoparticles showing promising results as fertilizers or pesticides. The present study compared the effects in the foliar application of Se nanoparticles (SeNPs) or sodium selenite-Se(IV) on rice seedlings. The degree of plant growth, photosynthetic pigment content, and concentrations of Se, Na, Mg, K, Ca, Mn, Co, Cu, Zn, As, Cd, and Pb were evaluated. The results showed that the application of SeNPs at high concentrations (5 mg L−1), as well as the application of Se(IV), inhibited plant growth and increased the root concentrations of As and Pb. The application of SeNPs at 0.5 mg L−1 significantly increased Se accumulation in the aerial part from 0.161 ± 0.028 mg kg−1 to 0.836 ± 0.097 mg kg−1 without influencing physiological, chemical, or biochemical parameters. When applied to leaves, SeNPs tended to remain in the aerial part, while the application of Se(IV) caused a higher Se translocation from the shoots to the roots. This study provides useful information concerning the uptake, accumulation, and translocation of different Se formulations in rice seedlings and their effect on plant ionomic profiles, thus showing that the foliar application of SeNPs at low concentrations can be an effective and safe alternative for rice biofortification.
Journal Article
Improving Soybean Germination and Nodule Development with Nitric Oxide-Releasing Polymeric Nanoparticles
by
Oliveira, Halley Caixeta
,
Pieretti, Joana Claudio
,
da Silva, Rafael Caetano
in
Abscisic acid
,
alginate nanoparticles
,
Alginates
2025
Nitric oxide (NO) is a multifunctional signaling molecule in plants, playing key roles in germination, microbial symbiosis, and nodule formation. However, its instability requires innovative approaches, such as using nanoencapsulated NO donors, to prolong its effects. This study evaluated the impact of treating soybean (Glycine max) seeds with the NO donor S-nitrosoglutathione (GSNO), encapsulated in polymeric nanoparticles, on the germination, nodulation, and plant growth. Seeds were treated with free GSNO, chitosan nanoparticles with/without NO (NP CS-GSNO/NP CS-GSH, where GSH is glutathione, the NO donor precursor), and alginate nanoparticles with/without NO (NP Al-GSNO/NP Al-GSH). Chitosan nanoparticles (positive zeta potential) were smaller and released NO faster compared with alginate nanoparticles (negative zeta potential). The seed treatment with NP CS-GSNO (1 mM, related to GSNO concentration) significantly improved germination percentage, root length, number of secondary roots, and dry root mass of soybean compared with the control. Conversely, NP CS-GSH resulted in decreased root and shoot length. NP Al-GSNO enhanced shoot dry mass and increased the number of secondary roots by approximately threefold at the highest concentrations. NP CS-GSNO, NP Al-GSNO, and NP Al-GSH increased S-nitrosothiol levels in the roots by approximately fourfold compared with the control. However, NP CS-GSNO was the only treatment that increased the nodule dry mass of soybean plants. Therefore, our results indicate the potential of chitosan nanoparticles to improve the application of NO donors in soybean seeds.
Journal Article
Mitochondrial Dysfunction in Cardiorenal Syndrome 3: Renocardiac Effect of Vitamin C
by
Pieretti, Joana Claudio
,
Tamashiro, Juliana Almeida
,
Neres-Santos, Raquel Silva
in
Amperometry
,
Animals
,
Antioxidants
2021
Cardiorenal syndrome (CRS) is a pathological link between the kidneys and heart, in which an insult in a kidney or heart leads the other organ to incur damage. CRS is classified into five subtypes, and type 3 (CRS3) is characterized by acute kidney injury as a precursor to subsequent cardiovascular changes. Mitochondrial dysfunction and oxidative and nitrosative stress have been reported in the pathophysiology of CRS3. It is known that vitamin C, an antioxidant, has proven protective capacity for cardiac, renal, and vascular endothelial tissues. Therefore, the present study aimed to assess whether vitamin C provides protection to heart and the kidneys in an in vivo CRS3 model. The unilateral renal ischemia and reperfusion (IR) protocol was performed for 60 min in the left kidney of adult mice, with and without vitamin C treatment, immediately after IR or 15 days after IR. Kidneys and hearts were subsequently collected, and the following analyses were conducted: renal morphometric evaluation, serum urea and creatinine levels, high-resolution respirometry, amperometry technique for NO measurement, gene expression of mitochondrial dynamic markers, and NOS. The analyses showed that the left kidney weight was reduced, urea and creatinine levels were increased, mitochondrial oxygen consumption was reduced, NO levels were elevated, and Mfn2 expression was reduced after 15 days of IR compared to the sham group. Oxygen consumption and NO levels in the heart were also reduced. The treatment with vitamin C preserved the left kidney weight, restored renal function, reduced NO levels, decreased iNOS expression, elevated constitutive NOS isoforms, and improved oxygen consumption. In the heart, oxygen consumption and NO levels were improved after vitamin C treatment, whereas the three NOS isoforms were overexpressed. These data indicate that vitamin C provides protection to the kidneys and some beneficial effects to the heart after IR, indicating it may be a preventive approach against cardiorenal insults.
Journal Article
Implications of ZnO Nanoparticles and S-Nitrosoglutathione on Nitric Oxide, Reactive Oxidative Species, Photosynthetic Pigments, and Ionomic Profile in Rice
by
Lourenço, Isabella Martins
,
Lange, Camila Neves
,
Pieretti, Joana Claudio
in
Agricultural production
,
antioxidants
,
Cell division
2023
Zinc is an important nutrient for several plants and humans. Nitric oxide (NO) is a free radical that is important to biological processes that mediate the growth and mitigation of biotic and abiotic stresses in plants. The present study investigated the enzymatic and photosynthetic profile and the accumulation of macro- and microelements in rice plants (Oryza sativa L.) that received foliar treatments of zinc oxide nanoparticles (ZnO NPs), nitric oxide donor (GSNO), and the association of both (GSNO–ZnO NPs). Zinc concentration in rice husks increased by 66% and 68% in plants treated with ZnO NPs and GSNO–ZnO NPs, respectively. The GSNO treatment caused an increase of 25% in the Fe concentration in the rice grains. Only a small disturbance of the antioxidant system was observed, with increases in H2O2, S-NO, and NO2−, mainly in the group treated with GSNO–ZnO NPs; however, the disturbance did not affect the yield, the growth, or vital processes, such as as photosynthetic pigments production. There was an increase in chlorophyll B of 290% and an increase in chlorophyll A of 187% when ZnO NPs was applied. GSNO–ZnO NPs increased chlorophyll B by 345% and chlorophyll A by 345%, indicating that the treatments GSNO, ZnO NPs, and GSNO–ZnO NPs reduced possible oxidative stress and helped as protective treatments.
Journal Article