Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
500 result(s) for "Seager, Sara"
Sort by:
Exoplanet Habitability
The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.
future of spectroscopic life detection on exoplanets
The discovery and characterization of exoplanets have the potential to offer the world one of the most impactful findings ever in the history of astronomy—the identification of life beyond Earth. Life can be inferred by the presence of atmospheric biosignature gases—gases produced by life that can accumulate to detectable levels in an exoplanet atmosphere. Detection will be made by remote sensing by sophisticated space telescopes. The conviction that biosignature gases will actually be detected in the future is moderated by lessons learned from the dozens of exoplanet atmospheres studied in last decade, namely the difficulty in robustly identifying molecules, the possible interference of clouds, and the permanent limitations from a spectrum of spatially unresolved and globally mixed gases without direct surface observations. The vision for the path to assess the presence of life beyond Earth is being established.
Constraining Exoplanet Mass from Transmission Spectroscopy
Determination of an exoplanet's mass is a key to understanding its basic properties, including its potential for supporting life. To date, mass constraints for exoplanets are predominantly based on radial velocity (RV) measurements, which are not suited for planets with low masses, large semimajor axes, or those orbiting faint or active stars. Here, we present a method to extract an exoplanet's mass solely from its transmission spectrum. We find good agreement between the mass retrieved for the hot Jupiter HD 189733b from transmission spectroscopy with that from RV measurements. Our method will be able to retrieve the masses of Earth-sized and super-Earth planets using data from future space telescopes that were initially designed for atmospheric characterization.
Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies
The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH₃), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH₃ dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO₂ as ammonium sulfite salts. This trapping of SO₂ in the clouds, together with the release of SO₂ below the clouds as the droplets settle out to higher temperatures, explains the vertical SO₂ abundance anomaly. A consequence of the presence of NH₃ is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH₃ is unknown but could involve biological production; if so, then the most energy-efficient NH₃-producing reaction also creates O₂, explaining the detection of O₂ in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.
General instability of dipeptides in concentrated sulfuric acid as relevant for the Venus cloud habitability
Recent renewed interest in the possibility of life in the acidic clouds of Venus has led to new studies on organic chemistry in concentrated sulfuric acid. We have previously found that the majority of amino acids are stable in the range of Venus’ cloud sulfuric acid concentrations (81% and 98% w/w, the rest being water). The natural next question is whether dipeptides, as precursors to larger peptides and proteins, could be stable in this environment. We investigated the reactivity of the peptide bond using 20 homodipeptides and find that the majority of them undergo solvolysis within a few weeks, at both sulfuric acid concentrations. Notably, a few exceptions exist. HH and GG dipeptides are stable in 98% w/w sulfuric acid for at least 4 months, while II, LL, VV, PP, RR and KK resist hydrolysis in 81% w/w sulfuric acid for at least 5 weeks. Moreover, the breakdown process of the dipeptides studied in 98% w/w concentrated sulfuric acid is different from the standard acid-catalyzed hydrolysis that releases monomeric amino acids. Despite a few exceptions at a single concentration, no homodipeptides have demonstrated stability across both acid concentrations studied. This indicates that any hypothetical life on Venus would likely require a functional substitute for the peptide bond that can maintain stability throughout the range of sulfuric acid concentrations present.
Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b
The transmission spectrum of the super-Earth exoplanet GJ 1214b is observed to be featureless at near-infrared wavelengths and its atmosphere must contain clouds to be consistent with the data. A tale of two planets Two papers in this issue of Nature report Hubble Space Telescope observations of two separate sub-Jupiter-sized extrasolar planets. Heather Knutson et al . observed four transits of the Neptune-mass planet GJ 436b and Laura Kreidberg et al . observed 15 transits of the smaller 'super-Earth' GJ 1214b. The transmission spectra of starlight passing through the atmospheres of these planets should give a good indication of the nature of their respective atmospheres, and for both planets the spectra obtained from Hubble's Wide Field Camera 3 are virtually featureless. Knutson et al . argue that their data are consistent with either a high cloud deck at pressures of 0.1–10 mbar or a hydrogen-poor atmosphere on GJ 436b. Kreidberg et al . conclude that their near-infrared spectra are consistent with the presence of high-altitude clouds that obscure the lower layers of GJ 1214b. Recent surveys have revealed that planets intermediate in size between Earth and Neptune (‘super-Earths’) are among the most common planets in the Galaxy 1 , 2 , 3 . Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object 4 , 5 , 6 . Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b (refs 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ), but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet’s atmosphere could be dominated by relatively heavy molecules, such as water (for example, a 100 per cent water vapour composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. The data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere. The observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide at greater than 5 σ confidence. The planet’s atmosphere must contain clouds to be consistent with the data.
Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b
Most known terrestrial planets orbit small stars with radii less than 60 per cent of that of the Sun 1 , 2 . Theoretical models predict that these planets are more vulnerable to atmospheric loss than their counterparts orbiting Sun-like stars 3 – 6 . To determine whether a thick atmosphere has survived on a small planet, one approach is to search for signatures of atmospheric heat redistribution in its thermal phase curve 7 – 10 . Previous phase curve observations of the super-Earth 55 Cancri e (1.9 Earth radii) showed that its peak brightness is offset from the substellar point (latitude and longitude of 0 degrees)—possibly indicative of atmospheric circulation 11 . Here we report a phase curve measurement for the smaller, cooler exoplanet LHS 3844b, a 1.3-Earth-radii world in an 11-hour orbit around the small nearby star LHS 3844. The observed phase variation is symmetric and has a large amplitude, implying a dayside brightness temperature of 1,040 ± 40 kelvin and a nightside temperature consistent with zero kelvin (at one standard deviation). Thick atmospheres with surface pressures above 10 bar are ruled out by the data (at three standard deviations), and less-massive atmospheres are susceptible to erosion by stellar wind. The data are well fitted by a bare-rock model with a low Bond albedo (lower than 0.2 at two standard deviations). These results support theoretical predictions that hot terrestrial planets orbiting small stars may not retain substantial atmospheres. Phase curve measurements for the small (1.3 Earth radii) terrestrial exoplanet LHS 3844b show absence of a thick atmosphere, in agreement with theoretical predictions.
Natural Products Containing ‘Rare’ Organophosphorus Functional Groups
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P–N (phosphoramidate), P–S (phosphorothioate), and P–C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P–N, P–S, and P–C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P–S) and phosphoramidate (P–N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P–N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.