Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
273 result(s) for "Sean M. Moore"
Sort by:
The current burden of Japanese encephalitis and the estimated impacts of vaccination: Combining estimates of the spatial distribution and transmission intensity of a zoonotic pathogen
Japanese encephalitis virus (JEV) is a major cause of neurological disability in Asia and causes thousands of severe encephalitis cases and deaths each year. Although Japanese encephalitis (JE) is a WHO reportable disease, cases and deaths are significantly underreported and the true burden of the disease is not well understood in most endemic countries. Here, we first conducted a spatial analysis of the risk factors associated with JE to identify the areas suitable for sustained JEV transmission and the size of the population living in at-risk areas. We then estimated the force of infection (FOI) for JE-endemic countries from age-specific incidence data. Estimates of the susceptible population size and the current FOI were then used to estimate the JE burden from 2010 to 2019, as well as the impact of vaccination. Overall, 1,543.1 million (range: 1,292.6-2,019.9 million) people were estimated to live in areas suitable for endemic JEV transmission, which represents only 37.7% (range: 31.6-53.5%) of the over four billion people living in countries with endemic JEV transmission. Based on the baseline number of people at risk of infection, there were an estimated 56,847 (95% CI: 18,003-184,525) JE cases and 20,642 (95% CI: 2,252-77,204) deaths in 2019. Estimated incidence declined from 81,258 (95% CI: 25,437-273,640) cases and 29,520 (95% CI: 3,334-112,498) deaths in 2010, largely due to increases in vaccination coverage which have prevented an estimated 314,793 (95% CI: 94,566-1,049,645) cases and 114,946 (95% CI: 11,421-431,224) deaths over the past decade. India had the largest estimated JE burden in 2019, followed by Bangladesh and China. From 2010-2019, we estimate that vaccination had the largest absolute impact in China, with 204,734 (95% CI: 74,419-664,871) cases and 74,893 (95% CI: 8,989-286,239) deaths prevented, while Taiwan (91.2%) and Malaysia (80.1%) had the largest percent reductions in JE burden due to vaccination. Our estimates of the size of at-risk populations and current JE incidence highlight countries where increasing vaccination coverage could have the largest impact on reducing their JE burden.
Estimating unobserved SARS-CoV-2 infections in the United States
By March 2020, COVID-19 led to thousands of deaths and disrupted economic activity worldwide. As a result of narrow case definitions and limited capacity for testing, the number of unobserved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections during its initial invasion of the United States remains unknown. We developed an approach for estimating the number of unobserved infections based on data that are commonly available shortly after the emergence of a new infectious disease. The logic of our approach is, in essence, that there are bounds on the amount of exponential growth of new infections that can occur during the first few weeks after imported cases start appearing. Applying that logic to data on imported cases and local deaths in the United States through 12 March, we estimated that 108,689 (95% posterior predictive interval [95%PPI]: 1,023 to 14,182,310) infections occurred in the United States by this date. By comparing the model’s predictions of symptomatic infections with local cases reported over time, we obtained daily estimates of the proportion of symptomatic infections detected by surveillance. This revealed that detection of symptomatic infections decreased throughout February as exponential growth of infections outpaced increases in testing. Between 24 February and 12 March, we estimated an increase in detection of symptomatic infections, which was strongly correlated (median: 0.98; 95% PPI: 0.66 to 0.98) with increases in testing. These results suggest that testing was a major limiting factor in assessing the extent of SARS-CoV-2 transmission during its initial invasion of the United States.
Mapping the burden of cholera in sub-Saharan Africa and implications for control: an analysis of data across geographical scales
Cholera remains a persistent health problem in sub-Saharan Africa and worldwide. Cholera can be controlled through appropriate water and sanitation, or by oral cholera vaccination, which provides transient (∼3 years) protection, although vaccine supplies remain scarce. We aimed to map cholera burden in sub-Saharan Africa and assess how geographical targeting could lead to more efficient interventions. We combined information on cholera incidence in sub-Saharan Africa (excluding Djibouti and Eritrea) from 2010 to 2016 from datasets from WHO, Médecins Sans Frontières, ProMED, ReliefWeb, ministries of health, and the scientific literature. We divided the study region into 20 km × 20 km grid cells and modelled annual cholera incidence in each grid cell assuming a Poisson process adjusted for covariates and spatially correlated random effects. We combined these findings with data on population distribution to estimate the number of people living in areas of high cholera incidence (>1 case per 1000 people per year). We further estimated the reduction in cholera incidence that could be achieved by targeting cholera prevention and control interventions at areas of high cholera incidence. We included 279 datasets covering 2283 locations in our analyses. In sub-Saharan Africa (excluding Djibouti and Eritrea), a mean of 141 918 cholera cases (95% credible interval [CrI] 141 538–146 505) were reported per year. 4·0% (95% CrI 1·7–16·8) of districts, home to 87·2 million people (95% CrI 60·3 million to 118·9 million), have high cholera incidence. By focusing on the highest incidence districts first, effective targeted interventions could eliminate 50% of the region's cholera by covering 35·3 million people (95% CrI 26·3 million to 62·0 million), which is less than 4% of the total population. Although cholera occurs throughout sub-Saharan Africa, its highest incidence is concentrated in a small proportion of the continent. Prioritising high-risk areas could substantially increase the efficiency of cholera control programmes. The Bill & Melinda Gates Foundation.
El Niño and the shifting geography of cholera in Africa
The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa—and away from Madagascar and portions of southern, Central, and West Africa—where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño’s impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.
Prioritizing interventions for preventing COVID-19 outbreaks in military basic training
Like other congregate living settings, military basic training has been subject to outbreaks of COVID-19. We sought to identify improved strategies for preventing outbreaks in this setting using an agent-based model of a hypothetical cohort of trainees on a U.S. Army post. Our analysis revealed unique aspects of basic training that require customized approaches to outbreak prevention, which draws attention to the possibility that customized approaches may be necessary in other settings, too. In particular, we showed that introductions by trainers and support staff may be a major vulnerability, given that those individuals remain at risk of community exposure throughout the training period. We also found that increased testing of trainees upon arrival could actually increase the risk of outbreaks, given the potential for false-positive test results to lead to susceptible individuals becoming infected in group isolation and seeding outbreaks in training units upon release. Until an effective transmission-blocking vaccine is adopted at high coverage by individuals involved with basic training, need will persist for non-pharmaceutical interventions to prevent outbreaks in military basic training. Ongoing uncertainties about virus variants and breakthrough infections necessitate continued vigilance in this setting, even as vaccination coverage increases.
Estimation of Lassa fever incidence rates in West Africa: Development of a modeling framework to inform vaccine trial design
Lassa fever (LF) is an acute viral hemorrhagic disease endemic to West Africa that has been declared a priority disease by the World Health Organization due to its severity and the lack of a vaccine or effective treatment options. Several candidate vaccines are currently in development and are expected to be ready for phase III field efficacy trials soon. However, most LF cases and deaths are believed to go unreported, and as a result we lack a clear understanding of several aspects of LF epidemiology and immunology that are critical to the design of vaccine efficacy trials. To help guide vaccine trial design and trial site selection we estimated the force of infection (FOI) from rodent hosts to humans in all 1st and 2nd administrative units in West Africa from published seroprevalence studies. We next estimated LF reporting probabilities using these FOI estimates and LF case and death reports and then projected FOI in all admin1 and admin2 areas without seroprevalence data. We then extrapolated age-specific LF incidence rates from FOI estimates under different assumptions regarding the level of protection against reinfection among seropositive and seronegative individuals with a history of prior infection. Projected FOI estimates and modeled annual LF incidence rates indicate that Sierra Leone, southern Guinea, and a few areas within Nigeria would likely experience the highest LF case incidence rates for a vaccine trial. Estimated LF incidence rates were highly sensitive to assumptions about Lassa immunology, particularly the frequency of seroreversion among previously infected individuals and the extent to which seroreverted individuals retain protection against reinfection and more severe disease outcomes. Our spatial LF incidence rate estimates, along with the interannual and seasonal variability in these estimates and estimates of baseline seroprevalence, could be used for vaccine trial site selection, choosing the target population (e.g., age and serostatus), and maximizing a trial's statistical power.
The projected impact of geographic targeting of oral cholera vaccination in sub-Saharan Africa: A modeling study
Cholera causes an estimated 100,000 deaths annually worldwide, with the majority of burden reported in sub-Saharan Africa. In May 2018, the World Health Assembly committed to reducing worldwide cholera deaths by 90% by 2030. Oral cholera vaccine (OCV) plays a key role in reducing the near-term risk of cholera, although global supplies are limited. Characterizing the potential impact and cost-effectiveness of mass OCV deployment strategies is critical for setting expectations and developing cholera control plans that maximize the chances of success. We compared the projected impacts of vaccination campaigns across sub-Saharan Africa from 2018 through 2030 when targeting geographically according to historical cholera burden and risk factors. We assessed the number of averted cases, deaths, and disability-adjusted life years and the cost-effectiveness of these campaigns with models that accounted for direct and indirect vaccine effects and population projections over time. Under current vaccine supply projections, an approach optimized to targeting by historical burden is projected to avert 828,971 (95% CI 803,370-859,980) cases (equivalent to 34.0% of projected cases; 95% CI 33.2%-34.8%). An approach that balances logistical feasibility with targeting historical burden is projected to avert 617,424 (95% CI 599,150-643,891) cases. In contrast, approaches optimized for targeting locations with limited access to water and sanitation are projected to avert 273,939 (95% CI 270,319-277,002) and 109,817 (95% CI 103,735-114,110) cases, respectively. We find that the most logistically feasible targeting strategy costs US$1,843 (95% CI 1,328-14,312) per DALY averted during this period and that effective geographic targeting of OCV campaigns can have a greater impact on cost-effectiveness than improvements to vaccine efficacy and moderate increases in coverage. Although our modeling approach does not project annual changes in baseline cholera risk or directly incorporate immunity from natural cholera infection, our estimates of the relative performance of different vaccination strategies should be robust to these factors. Our study suggests that geographic targeting substantially improves the cost-effectiveness and impact of oral cholera vaccination campaigns. Districts with the poorest access to improved water and sanitation are not the same as districts with the greatest historical cholera incidence. While OCV campaigns can improve cholera control in the near term, without rapid progress in developing water and sanitation services or dramatic increases in OCV supply, our results suggest that vaccine use alone is unlikely to allow us to achieve the 2030 goal.
Leveraging multiple data types to estimate the size of the Zika epidemic in the Americas
Several hundred thousand Zika cases have been reported across the Americas since 2015. Incidence of infection was likely much higher, however, due to a high frequency of asymptomatic infection and other challenges that surveillance systems faced. Using a hierarchical Bayesian model with empirically-informed priors, we leveraged multiple types of Zika case data from 15 countries to estimate subnational reporting probabilities and infection attack rates (IARs). Zika IAR estimates ranged from 0.084 (95% CrI: 0.067-0.096) in Peru to 0.361 (95% CrI: 0.214-0.514) in Ecuador, with significant subnational variability in every country. Totaling infection estimates across these and 33 other countries and territories, our results suggest that 132.3 million (95% CrI: 111.3-170.2 million) people in the Americas had been infected by the end of 2018. These estimates represent the most extensive attempt to determine the size of the Zika epidemic in the Americas, offering a baseline for assessing the risk of future Zika epidemics in this region.
Projecting vaccine demand and impact for emerging zoonotic pathogens
Background Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response. Methods We developed a modeling framework for outbreak response for emerging zoonoses under three reactive vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, MERS coronavirus, and Rift Valley virus. Results Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% prediction interval 0–3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0–8,480,000) regimens for Rift Valley fever virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently low R 0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination. Conclusions Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geographic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillover from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter vaccine stockpile requirements.
Over 100 Years of Rift Valley Fever: A Patchwork of Data on Pathogen Spread and Spillover
During the past 100 years, Rift Valley fever virus (RVFV), a mosquito-borne virus, has caused potentially lethal disease in livestock, and has been associated with significant economic losses and trade bans. Spillover to humans occurs and can be fatal. Here, we combined data on RVF disease in humans (22 countries) and animals (37 countries) from 1931 to 2020 with seroprevalence studies from 1950 to 2020 (n = 228) from publicly available databases and publications to draw a more complete picture of the past and current RVFV epidemiology. RVFV has spread from its original locus in Kenya throughout Africa and into the Arabian Peninsula. Throughout the study period seroprevalence increased in both humans and animals, suggesting potentially increased RVFV exposure. In 24 countries, animals or humans tested positive for RVFV antibodies even though outbreaks had never been reported there, suggesting RVFV transmission may well go unnoticed. Among ruminants, sheep were the most likely to be exposed during RVF outbreaks, but not during periods of cryptic spread. We discuss critical data gaps and highlight the need for detailed study descriptions, and long-term studies using a one health approach to further convert the patchwork of data to the tale of RFV epidemiology.