Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Sebaaly, Fadia"
Sort by:
MPC Design and Comparative Analysis of Single-Phase 7-Level PUC and 9-Level CSC Inverters for Grid Integration of PV Panels
In this study, a novel comparison between single phase 7-Level Packed U—Cell (PUC) inverter and single phase 9-Level Cross Switches Cell (CSC) inverter with Model Predictive Controller (MPC) for solar grid-tied applications is presented. Our innovation introduces a unique approach by integrating PV solar panels in PUC and CSC inverters in their two DC links rather than just one which increases power density of the system. Another key benefit for the proposed models lies in their simplified design, offering improved power quality and reduced complexity relative to traditional configurations. Moreover, both models feature streamlined control architectures that eliminate the need for additional controllers such as PI controllers for grid reference current extraction. Furthermore, the implementation of Maximum Power Point Tracking (MPPT) technology directly optimizes power output from the PV panels, negating the necessity for a DC-DC booster converter during integration. To validate the proposed concept’s performance for both inverters, extensive simulations were conducted using MATLAB/Simulink, assessing both inverters under steady-state conditions as well as various disturbances to evaluate its robustness and dynamic response. Both inverters exhibit robustness against variations in grid voltage, phase shift, and irradiation. By comparing both inverters, results demonstrate that the CSC inverter exhibits superior performance due to its booster feature which relies on generating voltage level greater than the DC input source. This primary advantage makes CSC a booster inverter.
Real-Time Implementation of Three-Phase Z Packed U-Cell Modular Multilevel Grid-Connected Converter Using CPU and FPGA
The Modular Multilevel Converter (MMC) is a promising converter for medium-/high voltage applications due to its various features. The waveform quality could be enhanced further by expanding the number of generated voltage levels, which increases the number of submodules (SMs); however, this improvement enlarges the size and cost of the converter, posing a persistent challenge. Hence, there exists a trade-off between power quality and the size and complexity of the converter. To verify the performance of such a complex converter and to validate the effectiveness of the control system, especially in the absence of a physical system, Real-Time (RT) simulation becomes crucial. However, the large number of components of a MMC creates important numerical challenges and computational difficulties in RT simulation. This paper proposes a grid-connected MMC employing a Z Packed U-Cell converter as a SM to generate a higher number of voltage levels while minimizing the required number of SMs. The ZPUC-MMC is implemented on an FPGA-based RT simulation platform using Electric Hardware Solver to reduce computational burden and simulation time, while improving the accuracy of the obtained results. Conventional controllers of MMCs are applied to assess the effectiveness and robustness of the proposed system during steady-state and dynamic operations.
Age and Multimorbidities as Poor Prognostic Factors for COVID-19 in Hemodialysis: a Lebanese National Study
Background Hemodialysis patients with COVID-19 have been reported to be at higher risk for death than the general population. Several prognostic factors have been identified in the studies from Asian, European or American countries. This is the first national Lebanese study assessing the factors associated with SARS-CoV-2 mortality in hemodialysis patients. Methods This is a cross-sectional study that included all chronic hemodialysis patients in Lebanon who were tested positive for SARS-CoV-2 from 31st March to 1st November 2020. Data on demographics, comorbidities, admission to hospital and outcome were collected retrospectively from the patients' medical records. A binary logistic regression analysis was performed to assess risk factors for mortality. Results A total of 231 patients were included. Mean age was 61.46 ± 13.99 years with a sex ratio of 128 males to 103 females. Around half of the patients were diabetics, 79.2% presented with fever. A total of 115 patients were admitted to the hospital, 59% of them within the first day of diagnosis. Hypoxia was the major reason for hospitalization. Death rate was 23.8% after a median duration of 6 (IQR, 2 to 10) days. Adjusted regression analysis showed a higher risk for death among older patients (odds ratio=1.038; 95% confidence interval: 1.013, 1.065), patients with heart failure (odds ratio=4.42; 95% confidence interval: 2.06, 9.49), coronary artery disease (odds ratio=3.27; 95% confidence interval: 1.69, 6.30), multimorbidities (odds ratio=1.593; 95% confidence interval: 1.247, 2.036), fever (odds ratio=6.66; 95% confidence interval: 1.94, 27.81), CRP above 100 mg/L (odds ratio=4.76; 95% confidence interval: 1.48, 15.30), and pneumonia (odds ratio=19.18; 95% confidence interval: 6.47, 56.83). Conclusions This national study identified older age, coronary artery disease, heart failure, multimorbidities, fever and pneumonia as risk factors for death in patients with COVID-19 on chronic hemodialysis. The death rate was comparable to other countries and estimated at 23.8%.