Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
74 result(s) for "Sebastien Prince"
Sort by:
Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at √s = 8 TeV with the ATLAS detector
A bstract This paper presents a measurement of the double-differential cross section for the Drell-Yan Z/γ ∗ → ℓ + ℓ − and photon-induced γγ → ℓ + ℓ − processes where ℓ is an electron or muon. The measurement is performed for invariant masses of the lepton pairs, m ℓℓ , between 116 GeV and 1500 GeV using a sample of 20 . 3 fb −1 of pp collisions data at centre-of-mass energy of s = 8 TeV collected by the ATLAS detector at the LHC in 2012. The data are presented double differentially in invariant mass and absolute dilepton rapidity as well as in invariant mass and absolute pseudorapidity separation of the lepton pair. The single-differential cross section as a function of m ℓℓ is also reported. The electron and muon channel measurements are combined and a total experimental precision of better than 1% is achieved at low m ℓℓ . A comparison to next-to-next-to-leading order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading order electroweak effects indicates the potential of the data to constrain parton distribution functions. In particular, a large impact of the data on the photon PDF is demonstrated.
Searches for the Zγ decay mode of the Higgs boson and for new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector
A bstract This article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Z γ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb −1 of pp collisions at s = 13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Z γ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Z γ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level.
Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at √s=7 TeV in the ATLAS detector
A bstract Various differential cross-sections are measured in top-quark pair t t ¯ events produced in proton-proton collisions at a centre-of-mass energy of s = 7 TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of 4 . 6 fb −1 . The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxy referred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on t t ¯ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a b -quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the W boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\\sqrt{s}=8$ TeV with the ATLAS detector
This paper presents a measurement of the W boson production cross section and the W$^{+}$/W$^{−}$ cross-section ratio, both in association with jets, in proton-proton collisions at $ \\sqrt{s}=8 $ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{−1}$. Differential cross sections for events with at least one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the W boson. For a subset of the observables, the differential cross sections of positively and negatively charged W bosons are measured separately. In the cross-section ratio of W$^{+}$/W$^{−}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.