Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
80
result(s) for
"Seeber, P. A."
Sort by:
Life history stage and extrinsic factors affect behavioural time allocation in plains zebras (Equus quagga) in the Serengeti ecosystem
2019
Time is a limited resource and how well it is allocated to competing behaviours can profoundly affect Darwinian fitness. Life history theory predicts that the amount of time allocated to vital behaviours will change with life history stage, resulting in trade-offs between competing behaviours. Moreover, a range of environmental factors can also affect activity budgets. We studied diurnal time allocation by migratory plains zebras (Equus quagga) in the Serengeti ecosystem, Tanzania, and investigated the effect of life history stage, social environment, habitat structure, and day time on time allocation to five behavioural categories (grazing, resting, vigilance, movement, other). We expected (1) increased vulnerability to predation and impeded predator detection to increase vigilance and decrease resting and grazing; (2) energetically costly life stages to increase grazing and decrease resting; and (3) increasing age in young to result in increased vigilance and grazing and decreased resting. Our findings revealed that in young zebras, resting decreased and grazing increased from the youngest to the oldest age class. Band stallions spent more time grazing and less time resting and moving than bachelors. Lactating mares devoted more time to grazing but less to resting and vigilance than other mares. Mares spent most time vigilant in the last third and stallions in the first third of the day. Adult zebras moved more, and mares were more vigilant in the woodland boundary than on short grass plains. Taken together, our study identifies intrinsic and extrinsic factors shaping time allocation decisions and trade-offs between competing behaviours in plains zebra.
Journal Article
The first European woolly rhinoceros mitogenomes retrieved from within cave hyena coprolites suggest long-lasting phylogeographic differentiation
2023
The woolly rhinoceros (Coelodonta antiquitatis) is an iconic species of the Eurasian Pleistocene megafauna, which was abundant in Eurasia in the Pleistocene until its demise beginning approximately 10,000 years ago. Despite the early recovery of several specimens from well-known European archaeological sites, including its type specimen (Blumenbach 1799), no genomes of European populations were available so far, and all available genomic data originated exclusively from the Siberian population1. Using coprolites of cave hyenas (Crocuta crocuta spelea) recovered from Middle Palaeolithic layers of two caves in Germany (Bockstein-Loch and Hohlenstein-Stadel), we isolated and enriched predator and prey DNA to assemble the first European woolly rhinoceros mitogenomes, in addition to cave hyena mitogenomes. These mitogenomes of European woolly rhinoceros are genetically distinct from the Siberian woolly rhinoceros, and analyses of the more complete mitogenome suggests a split of the populations potentially coinciding with the earliest fossil records of wooly rhinoceros in Europe.
Mitochondrial genomes of Pleistocene megafauna retrieved from recent sediment layers of two Siberian lakes
2023
Ancient environmental DNA (aeDNA) from lake sediments has yielded remarkable insights for the reconstruction of past ecosystems, including suggestions of late survival of extinct species. However, translocation and lateral inflow of DNA in sediments can potentially distort the stratigraphic signal of the DNA. Using three different approaches on two short lake sediment cores of the Yamal peninsula, West Siberia, with ages spanning only the past hundreds of years, we detect DNA and identified mitochondrial genomes of multiple mammoth and woolly rhinoceros individuals—both species that have been extinct for thousands of years on the mainland. The occurrence of clearly identifiable aeDNA of extinct Pleistocene megafauna (e.g., > 400K reads in one core) throughout these two short subsurface cores, along with specificities of sedimentology and dating, confirm that processes acting on regional scales, such as extensive permafrost thawing, can influence the aeDNA record and should be accounted for in aeDNA paleoecology.
Fungal biodiversity in Arctic paleoecosystems assessed by metabarcoding of lake sedimentary ancient DNA
2021
Fungi are crucial organisms in most ecosystems as they exert ecological key functions and are closely associated with land plants. Fungal community changes may therefore help reveal biodiversity changes in past ecosystems. Lake sediments contain DNA of organisms in the catchment area, which allows reconstructing past biodiversity by using metabarcoding of ancient sedimentary DNA. We developed a novel PCR primer combination for fungal metabarcoding targeting a short amplicon to account for length bias of amplification due to ancient DNA degradation. In-silico PCRs showed higher diversity using this primer combination than using previously established fungal metabarcoding primers. We analyzed existing data from sediment cores from four artic and one boreal lake in Siberia. These cores had been stored for 2–22 years and examined degradation effects of ancient DNA and storage time-related bias in fungal communities. Amplicon size differed between fungal divisions, however, we observed no significant effect of sample age on amplicon length and GC content, suggesting robust results. We also found no indication of post-coring fungal growth during storage distorting ancient fungal communities. Terrestrial soil fungi, including mycorrhizal fungi and saprotrophs, were predominant in all lakes, which supports the use of lake sedimentary ancient DNA for reconstructing terrestrial communities.
Paludiculture can support biodiversity conservation in rewetted fen peatlands
2023
Paludiculture, the productive use of wet or rewetted peatlands, offers an option for continued land use by farmers after rewetting formerly drained peatlands, while reducing the greenhouse gas emissions from peat soils. Biodiversity conservation may benefit, but research on how biodiversity responds to paludiculture is scarce. We conducted a multi-taxon study investigating vegetation, breeding bird and arthropod diversity at six rewetted fen sites dominated by
Carex
or
Typha
species. Sites were either unharvested, low- or high-intensity managed, and were located in Mecklenburg-Vorpommern in northeastern Germany. Biodiversity was estimated across the range of Hill numbers using the iNEXT package, and species were checked for Red List status. Here we show that paludiculture sites can provide biodiversity value even while not reflecting historic fen conditions; managed sites had high plant diversity, as well as Red Listed arthropods and breeding birds. Our study demonstrates that paludiculture has the potential to provide valuable habitat for species even while productive management of the land continues.
Journal Article
The relationship between measures of foot mobility and subtalar joint stiffness using vibration energy with color Doppler imaging-A clinical proof-of-concept validation study
2020
Subtalar joint (STJ) dysfunction can contribute to movement disturbances. Vibration energy with color Doppler imaging (VECDI) may be useful for detecting STJ stiffness changes.
(1) Support proof-of-concept that VECDI could detect STJ stiffness differences; (2) Establish STJ stiffness range in asymptomatic volunteers; (3) Examine relationships between STJ stiffness and foot mobility; and (4) Assess VECDI precision and reliability for examining STJ stiffness.
After establishing cadaveric testing model proof-of-concept, STJ stiffness (threshold units, ΔTU), ankle complex passive range-of-motion (PROM) and midfoot-width-difference (MFWDiff) data were collected in 28 asymptomatic subjects in vivo. Three reliability measurements were collected per variable; Rater-1 collected on all subjects and rater-2 on the first ten subjects. Subjects were classified into three STJ stiffness groups.
Cadaveric VECDI measurement intra-rater reliability was 0.80. A significantly lower STJ ΔTU (p = .002) and ankle complex PROM (p < .001) was observed during the screw fixation versus normal condition. A fair correlation (r = 0.660) was observed between cadaveric ΔTU and ankle complex PROM. In vivo VECDI measurements demonstrated good intra-rater (0.76-0.84) versus poor inter-rater (-3.11) reliability. Significant positive correlations were found between STJ stiffness and both dorsum (r = .440) and posterior (r = .390) PROM. MFWDiff exhibited poor relationships with stiffness (r = .103) and either dorsum (r = .256) or posterior (r = .301) PROM. STJ stiffness ranged from 2.33 to 7.50 ΔTUs, categorizing subjects' STJ stiffness as increased (n = 6), normal (n = 15), or decreased (n = 7). Significant ANOVA main effects for classification were found based on ΔTU (p< .001), dorsum PROM (p = .017), and posterior PROM (p = .036). Post-hoc tests revealed significant: (1) ΔTU differences between all stiffness groups (p < .001); (2) dorsum PROM differences between the increased versus normal (p = .044) and decreased (p = .017) stiffness groups; and (3) posterior PROM differences between the increased versus decreased stiffness groups (p = .044). A good relationship was found between STJ stiffness and dorsum PROM in the increased stiffness group (r = .853) versus poor, nonsignificant relationships in the normal (r = -.042) or decreased stiffness (r = -.014) groups.
PROM may not clinically explain all aspects of joint mobility. Joint VECDI stiffness assessment should be considered as a complimentary measurement technique.
Journal Article
Characterization of Three Vasopressin Receptor 2 Variants: An Apparent Polymorphism (V266A) and Two Loss-of-Function Mutations (R181C and M311V)
by
Ayoub, Mohammed Akli
,
Armstrong, Stephen P.
,
Pfleger, Kevin D. G.
in
Accumulation
,
Animals
,
Aquaporin 2 - genetics
2013
Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI), whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). Here we provide further characterization of two mutant V2Rs, R181C and M311V, reported to cause complete and partial NDI respectively, together with a V266A variant, in a patient diagnosed with NSIAD. Our data in HEK293FT cells revealed that for cAMP accumulation, AVP was about 500- or 30-fold less potent at the R181C and M311V mutants than at the wild-type receptor respectively (and about 4000- and 60-fold in COS7 cells respectively). However, in contrast to wild type V2R, the R181C mutant failed to increase inositol phosphate production, while with the M311V mutant, AVP exhibited only partial agonism in addition to a 37-fold potency decrease. Similar responses were detected in a BRET assay for β-arrestin recruitment, with the R181C receptor unresponsive to AVP, and partial agonism with a 23-fold decrease in potency observed with M311V in both HEK293FT and COS7 cells. Notably, the V266A V2R appeared functionally identical to the wild-type receptor in all assays tested, including cAMP and inositol phosphate accumulation, β-arrestin interaction, and in a BRET assay of receptor ubiquitination. Each receptor was expressed at comparable levels. Hence, the M311V V2R retains greater activity than the R181C mutant, consistent with the milder phenotype of NDI associated with this mutant. Notably, the R181C mutant appears to be a Gs protein-biased receptor incapable of signaling to inositol phosphate or recruiting β-arrestin. The etiology of NSIAD in the patient with V266A V2R remains unknown.
Journal Article
Psychological Distress Changes During COVID-19: A Belgian Cohort Study On Psychosocial Factors
2024
Longitudinal studies have identified an increase in psychological distress across the general population during the COVID-19 pandemic. Nevertheless, the trajectories of mental health outcomes exhibit variations, suggesting potential associations with psychosocial individual factors. This paper identifies the factors of this individual trajectory of psychological distress during the COVID-19 pandemic. Five waves of a prospective cohort survey were conducted with a convenience sample of the general population in Belgium between March 2020 and November 2021 (n = 4,550). Psychological distress was measured using the GHQ-12. Individual covariates included socioeconomic factors (age, gender, level of education), psychological factors (loneliness, social support, and social activities), and factors related to the virus and the lockdown measures (exposure to COVID-19 and survey wave). Multilevel models were used for analysis. Women and young people experienced more pronounced fluctuations in their risk of psychological distress across study waves, experiencing both increases and decreases. We found that individual variance in psychological distress breaks down into two components, respectively 43% for psychosocial factors (time-invariant) and 57% for the survey waves (time-variant) variation. A significant share of the time-invariant difference in psychological distress over COVID-19 is associated with loneliness, social support, and social activities. Loneliness emerged as the most important interpersonal factor associated with psychological distress. The change in psychological distress was mainly associated with psychosocial factors rather than with pandemic-related dynamics (e.g. survey waves). These findings suggest that mitigation policies aiming at controlling the pandemic should focus more on addressing specific individual vulnerabilities rather than solely responding to the fluctuations within pandemic waves to decrease their detrimental impact on mental health.
Conference Proceeding
Pasture degradation modifies the water and carbon cycles of the Tibetan highlands
2014
The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.
Journal Article
Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany
by
Trumbore, Susan E.
,
Kohlhepp, Bernd
,
Seeber, Paul
in
Alternations
,
Aquifer recharge
,
Aquifer systems
2017
The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface–subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate–siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water–rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.
Journal Article