Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Seedig, Hans Georg"
Sort by:
Possible and Necessary Winners of Partial Tournaments
We study the problem of computing possible and necessary winners for partially specified weighted and unweighted tournaments. This problem arises naturally in elections with incompletely specified votes, partially completed sports competitions, and more generally in any scenario where the outcome of some pairwise comparisons is not yet fully known. We specifically consider a number of well-known solution concepts---including the uncovered set, Borda, ranked pairs, and maximin---and show that for most of them, possible and necessary winners can be identified in polynomial time. These positive algorithmic results stand in sharp contrast to earlier results concerning possible and necessary winners given partially specified preference profiles.
CONSISTENT PROBABILISTIC SOCIAL CHOICE
Two fundamental axioms in social choice theory are consistency with respect to a variable electorate and consistency with respect to components of similar alternatives. In the context of traditional non-probabilistic social choice, these axioms are incompatible with each other. We show that in the context of probabilistic social choice, these axioms uniquely characterize a function proposed by Fishburn (1984). Fishburn's function returns so-called maximal lotteries, that is, lotteries that correspond to optimal mixed strategies in the symmetric zero-sum game induced by the pairwise majority margins. Maximal lotteries are guaranteed to exist due to von Neumann's Minimax Theorem, are almost always unique, and can be efficiently computed using linear programming.
On the structure of stable tournament solutions
A fundamental property of choice functions is stability, which, loosely speaking, prescribes that choice sets are invariant under adding and removing unchosen alternatives. We provide several structural insights that improve our understanding of stable choice functions. In particular, (1) we show that every stable choice function is generated by a unique simple choice function, which never excludes more than one alternative, (2) we completely characterize which simple choice functions give rise to stable choice functions, and (3) we prove a strong relationship between stability and a new property of tournament solutions called local reversal symmetry. Based on these findings, we provide the first concrete tournament—consisting of 24 alternatives—in which the tournament equilibrium set fails to be stable. Furthermore, we prove that there is no more discriminating stable tournament solution than the bipartisan set and that the bipartisan set is the unique most discriminating tournament solution which satisfies standard properties proposed in the literature.
On the Structure of Stable Tournament Solutions
A fundamental property of choice functions is stability, which, loosely speaking, prescribes that choice sets are invariant under adding and removing unchosen alternatives. We provide several structural insights that improve our understanding of stable choice functions. In particular, (i) we show that every stable choice function is generated by a unique simple choice function, which never excludes more than one alternative, (ii) we completely characterize which simple choice functions give rise to stable choice functions, and (iii) we prove a strong relationship between stability and a new property of tournament solutions called local reversal symmetry. Based on these findings, we provide the first concrete tournament---consisting of 24 alternatives---in which the tournament equilibrium set fails to be stable. Furthermore, we prove that there is no more discriminating stable tournament solution than the bipartisan set and that the bipartisan set is the unique most discriminating tournament solution which satisfies standard properties proposed in the literature.
On the Structure of Stable Tournament Solutions
A fundamental property of choice functions is stability, which, loosely speaking, prescribes that choice sets are invariant under adding and removing unchosen alternatives. We provide several structural insights that improve our understanding of stable choice functions. In particular, (i) we show that every stable choice function is generated by a unique simple choice function, which never excludes more than one alternative, (ii) we completely characterize which simple choice functions give rise to stable choice functions, and (iii) we prove a strong relationship between stability and a new property of tournament solutions called local reversal symmetry. Based on these findings, we provide the first concrete tournament---consisting of 24 alternatives---in which the tournament equilibrium set fails to be stable. Furthermore, we prove that there is no more discriminating stable tournament solution than the bipartisan set and that the bipartisan set is the unique most discriminating tournament solution which satisfies standard properties proposed in the literature.
Consistent Probabilistic Social Choice
Two fundamental axioms in social choice theory are consistency with respect to a variable electorate and consistency with respect to components of similar alternatives. In the context of traditional non-probabilistic social choice, these axioms are incompatible with each other. We show that in the context of probabilistic social choice, these axioms uniquely characterize a function proposed by Fishburn (Rev. Econ. Stud., 51(4), 683--692, 1984). Fishburn's function returns so-called maximal lotteries, i.e., lotteries that correspond to optimal mixed strategies of the underlying plurality game. Maximal lotteries are guaranteed to exist due to von Neumann's Minimax Theorem, are almost always unique, and can be efficiently computed using linear programming.
A tournament of order 24 with two disjoint TEQ-retentive sets
Brandt et al. (2013) have recently disproved a conjecture by Schwartz (1990) by non-constructively showing the existence of a counterexample with about 10^136 alternatives. We provide a concrete counterexample for Schwartz's conjecture with only 24 alternatives.
Optimal Partitions in Additively Separable Hedonic Games
We conduct a computational analysis of fair and optimal partitions in additively separable hedonic games. We show that, for strict preferences, a Pareto optimal partition can be found in polynomial time while verifying whether a given partition is Pareto optimal is coNP-complete, even when preferences are symmetric and strict. Moreover, computing a partition with maximum egalitarian or utilitarian social welfare or one which is both Pareto optimal and individually rational is NP-hard. We also prove that checking whether there exists a partition which is both Pareto optimal and envy-free is \\(\\Sigma_{2}^{p}\\)-complete. Even though an envy-free partition and a Nash stable partition are both guaranteed to exist for symmetric preferences, checking whether there exists a partition which is both envy-free and Nash stable is NP-complete.
Stable partitions in additively separable hedonic games
An important aspect in systems of multiple autonomous agents is the exploitation of synergies via coalition formation. In this paper, we solve various open problems concerning the computational complexity of stable partitions in additively separable hedonic games. First, we propose a polynomial-time algorithm to compute a contractually individually stable partition. This contrasts with previous results such as the NP-hardness of computing individually stable or Nash stable partitions. Secondly, we prove that checking whether the core or the strict core exists is NP-hard in the strong sense even if the preferences of the players are symmetric. Finally, it is shown that verifying whether a partition consisting of the grand coalition is contractually strict core stable or Pareto optimal is coNP-complete.
k-Majority Digraphs and the Hardness of Voting with a Constant Number of Voters
Many hardness results in computational social choice make use of the fact that every directed graph may be induced as the pairwise majority relation of some preference profile. However, this fact requires a number of voters that is almost linear in the number of alternatives. It is therefore unclear whether these results remain intact when the number of voters is bounded, as is, for example, typically the case in search engine aggregation settings. In this paper, we provide a systematic study of majority digraphs for a constant number of voters resulting in analytical, experimental, and complexity-theoretic insights. First, we characterize the set of digraphs that can be induced by two and three voters, respectively, and give sufficient conditions for larger numbers of voters. Second, we present a surprisingly efficient implementation via SAT solving for computing the minimal number of voters that is required to induce a given digraph and experimentally evaluate how many voters are required to induce the majority digraphs of real-world and generated preference profiles. Finally, we leverage our sufficient conditions to show that the winner determination problem of various well-known voting rules remains hard even when there is only a small constant number of voters. In particular, we show that Kemeny's rule is hard to evaluate for 7 voters, while previous methods could only establish such a result for constant even numbers of voters.