Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
79 result(s) for "Seidel, Ronald"
Sort by:
Mechanistic dissection of the PD-L1:B7-1 co-inhibitory immune complex
The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1:B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.
Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives
Lewis X (Lex)-containing glycans play important roles in numerous cellular processes. However, the absence of robust, facile, and cost-effective methods for the synthesis of Lex and its structurally related analogs has severely hampered the elucidation of the specific functions of these glycan epitopes. Here we demonstrate that chemically defined guanidine 5'-diphosphate-β-L-fucose (GDP-fucose), the universal fucosyl donor, the Lex trisaccharide, and their C-5 substituted derivatives can be synthesized on preparative scales, using a chemoenzymatic approach. This method exploits L-fucokinase/GDP-fucose pyrophosphorylase (FKP), a bifunctional enzyme isolated from Bacteroides fragilis 9343, which converts L-fucose into GDP-fucose via a fucose-1-phosphate (Fuc-1-P) intermediate. Combining the activities of FKP and a Helicobacter pylori α1,3 fucosyltransferase, we prepared a library of Lex trisaccharide glycans bearing a wide variety of functional groups at the fucose C-5 position. These neoglycoconjugates will be invaluable tools for studying Lex-mediated biological processes.
Large-Scale Determination of Sequence, Structure, and Function Relationships in Cytosolic Glutathione Transferases across the Biosphere
The cytosolic glutathione transferase (cytGST) superfamily comprises more than 13,000 nonredundant sequences found throughout the biosphere. Their key roles in metabolism and defense against oxidative damage have led to thousands of studies over several decades. Despite this attention, little is known about the physiological reactions they catalyze and most of the substrates used to assay cytGSTs are synthetic compounds. A deeper understanding of relationships across the superfamily could provide new clues about their functions. To establish a foundation for expanded classification of cytGSTs, we generated similarity-based subgroupings for the entire superfamily. Using the resulting sequence similarity networks, we chose targets that broadly covered unknown functions and report here experimental results confirming GST-like activity for 82 of them, along with 37 new 3D structures determined for 27 targets. These new data, along with experimentally known GST reactions and structures reported in the literature, were painted onto the networks to generate a global view of their sequence-structure-function relationships. The results show how proteins of both known and unknown function relate to each other across the entire superfamily and reveal that the great majority of cytGSTs have not been experimentally characterized or annotated by canonical class. A mapping of taxonomic classes across the superfamily indicates that many taxa are represented in each subgroup and highlights challenges for classification of superfamily sequences into functionally relevant classes. Experimental determination of disulfide bond reductase activity in many diverse subgroups illustrate a theme common for many reaction types. Finally, sequence comparison between an enzyme that catalyzes a reductive dechlorination reaction relevant to bioremediation efforts with some of its closest homologs reveals differences among them likely to be associated with evolution of this unusual reaction. Interactive versions of the networks, associated with functional and other types of information, can be downloaded from the Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu).
Panoramic view of a superfamily of phosphatases through substrate profiling
Significance Here, we examine the activity profile of the haloalkanoic acid dehalogenase (HAD) superfamily by screening a customized library against >200 enzymes from a broad sampling of the superfamily. From this dataset, we can infer the function of nearly 35% of the superfamily. Overall, the superfamily was found to show high substrate ambiguity, with 75% of the superfamily utilizing greater than five substrates. In addition, the HAD members with the least amount of structural accessorization of the Rossmann fold were found to be the most specific, suggesting that elaboration of the core domain may have led to increased substrate range of the superfamily. Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.
Discovery of new enzymes and metabolic pathways by using structure and genome context
Pathway docking ( in silico docking of metabolites to several enzymes and binding proteins in a metabolic pathway) enables the discovery of a catabolic pathway for the osmolyte trans -4-hydroxy- l -proline betaine. Structural key to predicting enzyme function Overprediction and database annotation errors in genome-sequencing projects have caused much confusion because of the difficulty of assigning valid functions to the proteins identified. These authors use structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster to correctly predict the in vitro activity of an enzyme of unknown function and identify the catabolic pathway in which it participates in cells. The substrate-liganded pose predicted by virtual library screening was confirmed experimentally, enzyme activities in the predicted pathway were confirmed by in vitro assays and genetic analyses, the intermediates were identified by metabolomics, and repression of the genes encoding the pathway by high salt concentrations was established by transcriptomics. This study establishes the utility of structure-guided functional predictions for the discovery of new metabolic pathways. Assigning valid functions to proteins identified in genome projects is challenging: overprediction and database annotation errors are the principal concerns 1 . We and others 2 are developing computation-guided strategies for functional discovery with ‘metabolite docking’ to experimentally derived 3 or homology-based 4 three-dimensional structures. Bacterial metabolic pathways often are encoded by ‘genome neighbourhoods’ (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by ‘predicting’ the intermediates in the glycolytic pathway in Escherichia coli 5 . Metabolite docking to multiple binding proteins and enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. Here we report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans -4-hydroxy- l -proline betaine (tHyp-B) and cis -4-hydroxy- d -proline betaine (cHyp-B), and also the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt concentrations was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guided functional predictions to enable the discovery of new metabolic pathways.
T cell receptor–targeted immunotherapeutics drive selective in vivo HIV- and CMV-specific T cell expansion in humanized mice
To delineate the in vivo role of different costimulatory signals in activating and expanding highly functional virus-specific cytotoxic CD8+ T cells, we designed synTacs, infusible biologics that recapitulate antigen-specific T cell activation signals delivered by antigen-presenting cells. We constructed synTacs consisting of dimeric Fc-domain scaffolds linking CD28- or 4-1BB-specific ligands to HLA-A2 MHC molecules covalently tethered to HIV- or CMV-derived peptides. Treatment of HIV-infected donor PBMCs with synTacs bearing HIV- or CMV-derived peptides induced vigorous and selective ex vivo expansion of highly functional HIV- and/or CMV-specific CD8+ T cells, respectively, with potent antiviral activities. Intravenous injection of HIV- or CMV-specific synTacs into immunodeficient mice intrasplenically engrafted with donor PBMCs markedly and selectively expanded HIV-specific (32-fold) or CMV-specific (46-fold) human CD8+ T cells populating their spleens. Notably, these expanded HIV- or CMV-specific CD8+ T cells directed potent in vivo suppression of HIV or CMV infections in the humanized mice, providing strong rationale for consideration of synTac-based approaches as a therapeutic strategy to cure HIV and treat CMV and other viral infections. The synTac platform flexibility supports facile delineation of in vivo effects of different costimulatory signals on patient-derived virus-specific CD8+ T cells, enabling optimization of individualized therapies, including HIV cure strategies.
In vivo detection of antigen-specific CD8+ T cells by immuno-positron emission tomography
The immune system’s ability to recognize peptides on major histocompatibility molecules contributes to the eradication of cancers and pathogens. Tracking these responses in vivo could help evaluate the efficacy of immune interventions and improve mechanistic understanding of immune responses. For this purpose, we employ synTacs, which are dimeric major histocompatibility molecule scaffolds of defined composition. SynTacs, when labeled with positron-emitting isotopes, can noninvasively image antigen-specific CD8 + T cells in vivo. Using radiolabeled synTacs loaded with the appropriate peptides, we imaged human papillomavirus-specific CD8 + T cells by positron emission tomography in mice bearing human papillomavirus-positive tumors, as well as influenza A virus–specific CD8 + T cells in the lungs of influenza A virus–infected mice. It is thus possible to visualize antigen-specific CD8 + T-cell populations in vivo, which may serve prognostic and diagnostic roles. Antigen-specific CD8 + T cells can be imaged by immunoPET with the help of synTacs, MHC-based tools that bind to relevant T-cell receptors.
Shape-preserving erosion controlled by the graded microarchitecture of shark tooth enameloid
The teeth of all vertebrates predominantly comprise the same materials, but their lifespans vary widely: in stark contrast to mammals, shark teeth are functional only for weeks, rather than decades, making lifelong durability largely irrelevant. However, their diets are diverse and often mechanically demanding, and as such, their teeth should maintain a functional morphology, even in the face of extremely high and potentially damaging contact stresses. Here, we reconcile the dilemma between the need for an operative tooth geometry and the unavoidable damage inherent to feeding on hard foods, demonstrating that the tooth cusps of Port Jackson sharks, hard-shelled prey specialists, possess unusual microarchitecture that controls tooth erosion in a way that maintains functional cusp shape. The graded architecture in the enameloid provokes a location-specific damage response, combining chipping of outer enameloid and smooth wear of inner enameloid to preserve an efficient shape for grasping hard prey. Our discovery provides experimental support for the dominant theory that multi-layered tooth enameloid facilitated evolutionary diversification of shark ecologies. Shark teeth have short lifespans yet can be subject to significant mechanical damage. Here, the authors report on a site-specific damage mechanism in shark teeth enameloid, which maintains tooth functional shape, providing experimental evidence that tooth architecture may have influenced the diversification of shark ecologies over evolution.
Computational-guided discovery and characterization of a sesquiterpene synthase from Streptomyces clavuligerus
Significance This paper describes a novel strategy for predicting the function of terpene synthases. Functional assignment of terpene synthases is a daunting task because product selectivity is not high in many terpene synthases, and mutations in and near the active sites of selective enzyme can result in synthesis of different products. Using a homology model of an unknown terpene synthase, we developed an algorithm that predicted the enzyme synthesizes a linear triquinane. We confirmed this prediction; specifically, the enzyme converts farnesyl diphosphate to a linear triquinine sesquiterpene: (5 S ,7 S ,10 R ,11 S )-cucumene. The findings highlight the potential for using computational approaches to assist in the discovery and characterization of unknown terpene synthases. Terpenoids are a large structurally diverse group of natural products with an array of functions in their hosts. The large amount of genomic information from recent sequencing efforts provides opportunities and challenges for the functional assignment of terpene synthases that construct the carbon skeletons of these compounds. Inferring function from the sequence and/or structure of these enzymes is not trivial because of the large number of possible reaction channels and products. We tackle this problem by developing an algorithm to enumerate possible carbocations derived from the farnesyl cation, the first reactive intermediate of the substrate, and evaluating their steric and electrostatic compatibility with the active site. The homology model of a putative pentalenene synthase (Uniprot: B5GLM7) from Streptomyces clavuligerus was used in an automated computational workflow for product prediction. Surprisingly, the workflow predicted a linear triquinane scaffold as the top product skeleton for B5GLM7. Biochemical characterization of B5GLM7 reveals the major product as (5 S ,7 S ,10 R ,11 S )-cucumene, a sesquiterpene with a linear triquinane scaffold. To our knowledge, this is the first documentation of a terpene synthase involved in the synthesis of a linear triquinane. The success of our prediction for B5GLM7 suggests that this approach can be used to facilitate the functional assignment of novel terpene synthases.
Peptide-HLA-based immunotherapeutics platforms for direct modulation of antigen-specific T cells
Targeted pharmacologic activation of antigen-specific (AgS) T cells may bypass limitations inherent in current T cell-based cancer therapies. We describe two immunotherapeutics platforms for selective delivery of costimulatory ligands and peptide-HLA (pHLA) to AgS T cells. We engineered and deployed on these platforms an affinity-attenuated variant of interleukin-2, which selectively expands oligoclonal and polyfunctional AgS T cells in vitro and synergizes with CD80 signals for superior proliferation versus peptide stimulation.