Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Seiferth, David"
Sort by:
Conformational transitions and allosteric modulation in a heteromeric glycine receptor
2023
Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and β subunits. Here we present cryo-EM structures of full-length zebrafish α1β
B
GlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the β-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1β stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α
1
βGlyR and provide a framework for further study of this physiologically important channel.
Glycine receptors (GlyR) are a critical postsynaptic component of spinal neurons. Here, the auhtors present cryo-EM structures of a heteromeric GlyR in the presence of an antagonist, agonist and agonist with a positive allosteric modulator.
Journal Article
Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment
2024
GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 – 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.
Gloeobacter proton-gated ion channel (GLIC) is a convenient model of pentameric ligand-gated ion channels. Here, Bharambe & Li et al. report structures and simulations of GLIC with insights into the role of lipids in GLIC gating mechanism.
Journal Article
Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis
by
Habgood, Matthew
,
Biggin, Philip C.
,
Seiferth, David
in
631/535/1267
,
631/57/2266
,
Allosteric properties
2022
The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open ‘pockets’ in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.
Journal Article
Exploring the Influence of Pore Shape on Conductance and Permeation
2024
There are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1βB Glycine and α4β2 Nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often leads to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of non-spherical ellipsoids for pore characterization, provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes (CNTs) with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels, but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a webservice.
Coarse graining of biochemical systems described by discrete stochastic dynamics
2021
Many biological systems can be described by finite Markov models. A general method for simplifying master equations is presented that is based on merging adjacent states. The approach preserves the steady-state probability distribution and all steady-state fluxes except the one between the merged states. Different levels of coarse graining of the underlying microscopic dynamics can be obtained by iteration, with the result being independent of the order in which states are merged. A criterion for the optimal level of coarse graining or resolution of the process is proposed via a tradeoff between the simplicity of the coarse-grained model and the information loss relative to the original model. As a case study, the method is applied to the cycle kinetics of the molecular motor kinesin.
Heartbeat perception is causally linked to frontal delta oscillations
2025
The ability to accurately perceive one’s own bodily signals, such as the heartbeat, plays a vital role in physical and mental health. However, the neurophysiological mechanisms underlying this ability, termed interoception, are not fully understood. Converging evidence suggests that cardiac rhythms are linked to frontal brain activity, particularly oscillations in the delta (0.5 – 4 Hz) band, but their causal relationship remained elusive. Here, we identified a frontal network of delta oscillations that was anticorrelated with both heartbeat perception and heartbeat-evoked brain responses. Using amplitude-modulated transcranial alternating current stimulation (AM-tACS), a method to enhance or suppress brain oscillations in a phase-specific manner, we investigated whether frontal delta oscillations are causally linked to heartbeat perception. We found that enhancement of delta phase synchrony suppressed heartbeat detection accuracy, while suppression of delta phase synchrony enhanced heartbeat detection accuracy. These findings suggest that frontal delta oscillations play a significant role in heartbeat perception, paving the way for causal investigations of interoception and potential clinical applications.
Causal manipulation of frontal delta oscillations demonstrates their inhibitory role in heartbeat perception, linking oscillatory synchrony to interoceptive accuracy.
Journal Article
Behavioural and functional evidence revealing the role of RBFOX1 variation in multiple psychiatric disorders and traits
by
Meyer-Lindenberg, Andreas
,
Harneit, Anais
,
Erk, Susanne
in
Animal models
,
Autism
,
Avoidance behavior
2022
Common variation in the gene encoding the neuron-specific RNA splicing factor RNA Binding Fox-1 Homolog 1 (RBFOX1) has been identified as a risk factor for several psychiatric conditions, and rare genetic variants have been found causal for autism spectrum disorder (ASD). Here, we explored the genetic landscape of RBFOX1 more deeply, integrating evidence from existing and new human studies as well as studies in Rbfox1 knockout mice. Mining existing data from large-scale studies of human common genetic variants, we confirmed gene-based and genome-wide association of RBFOX1 with risk tolerance, major depressive disorder and schizophrenia. Data on six mental disorders revealed copy number losses and gains to be more frequent in ASD cases than in controls. Consistently, RBFOX1 expression appeared decreased in post-mortem frontal and temporal cortices of individuals with ASD and prefrontal cortex of individuals with schizophrenia. Brain-functional MRI studies demonstrated that carriers of a common RBFOX1 variant, rs6500744, displayed increased neural reactivity to emotional stimuli, reduced prefrontal processing during cognitive control, and enhanced fear expression after fear conditioning, going along with increased avoidance behaviour. Investigating Rbfox1 neuron-specific knockout mice allowed us to further specify the role of this gene in behaviour. The model was characterised by pronounced hyperactivity, stereotyped behaviour, impairments in fear acquisition and extinction, reduced social interest, and lack of aggression; it provides excellent construct and face validity as an animal model of ASD. In conclusion, convergent translational evidence shows that common variants in RBFOX1 are associated with a broad spectrum of psychiatric traits and disorders, while rare genetic variation seems to expose to early-onset neurodevelopmental psychiatric disorders with and without developmental delay like ASD, in particular. Studying the pleiotropic nature of RBFOX1 can profoundly enhance our understanding of mental disorder vulnerability.
Journal Article
Identification of common variants associated with human hippocampal and intracranial volumes
by
Meyer-Lindenberg, Andreas
,
Holsboer, Florian
,
Freimer, Nelson B
in
631/208/205/2138
,
631/208/480
,
631/208/726/649
2012
Paul Thompson and colleagues report a genome-wide association study for hippocampal, intracranial and total brain volume. They identify a locus at 12q24 associated with hippocampal volume and a locus at 12q14 associated with intracranial volume.
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease
1
,
2
and is reduced in schizophrenia
3
, major depression
4
and mesial temporal lobe epilepsy
5
. Whereas many brain imaging phenotypes are highly heritable
6
,
7
, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22;
N
= 21,151;
P
= 6.70 × 10
−16
) and the expression levels of the positional candidate gene
TESC
in brain tissue. Additionally, rs10784502, located within
HMGA2
, was associated with intracranial volume (12q14.3;
N
= 15,782;
P
= 1.12 × 10
−12
). We also identified a suggestive association with total brain volume at rs10494373 within
DDR2
(1q23.3;
N
= 6,500;
P
= 5.81 × 10
−7
).
Journal Article
Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects
by
Meyer-Lindenberg, Andreas
,
Erk, Susanne
,
Cichon, Sven
in
Adult
,
Biological and medical sciences
,
Brain - physiopathology
2014
Variation in the CACNA1C gene has consistently been associated with psychosis in genome wide association studies. We have previously shown in a sample of n=110 healthy subjects that carriers of the CACNA1C rs1006737 risk variant exhibit hippocampal and perigenual anterior cingulate dysfunction (pgACC) during episodic memory recall. Here, we aimed to replicate our results, by testing for the effects of the rs1006737 risk variant in a new large cohort of healthy controls. We furthermore sought to refine these results by identifying the impact of a CACNA1C specific, gene-wide risk score in the absence of clinical pathology.
An independent sample of 179 healthy subjects genotyped for rs1006737 underwent functional magnetic resonance imaging (fMRI) while performing an associative episodic memory task and underwent psychological testing similar to the discovery sample. The effect of gene-wide risk scores was analyzed in the combined sample of 289 subjects.
We replicated our discovery findings of hippocampal and pgACC dysfunction in carriers of the rs1006737 risk variant. Additionally, we observed diminished activation of the dorsolateral prefrontal cortex, in the replication sample. Our replicated results as well as this new effect were also observable in the combined sample. Moreover, the same system-level phenotypes were significantly associated with the individual gene-based genetic risk score.
Our findings suggest that altered hippocampal and frontolimbic function is associated with variants in the CACNA1C gene. Since CACNA1C variants have been associated repeatedly with psychosis at a genome-wide level, and preclinical data provide convergent evidence for the relevance of the CACNA1C gene for hippocampal and frontolimbic plasticity and adaptive regulation of stress, our data suggest a potential pathophysiological mechanism conferred by CACNA1C variants that may mediate risk for symptom dimensions shared among bipolar disorder, major depression, and schizophrenia.
Journal Article