Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
113
result(s) for
"Seiichi Sakamoto"
Sort by:
Selective and reversible modification of kinase cysteines with chlorofluoroacetamides
2019
Irreversible inhibition of disease-associated proteins with small molecules is a powerful approach for achieving increased and sustained pharmacological potency. Here, we introduce α-chlorofluoroacetamide (CFA) as a novel warhead of targeted covalent inhibitor (TCI). Despite weak intrinsic reactivity, CFA-appended quinazoline showed high reactivity toward Cys797 of epidermal growth factor receptor (EGFR). In cells, CFA-quinazoline showed higher target specificity for EGFR than the corresponding Michael acceptors in a wide concentration range (0.1–10 μM). The cysteine adduct of the CFA derivative was susceptible to hydrolysis and reversibly yielded intact thiol but was stable in solvent-sequestered ATP-binding pocket of EGFR. This environment-dependent hydrolysis can potentially reduce off-target protein modification by CFA-based drugs. Oral administration of CFA quinazoline NS-062 significantly suppressed tumor growth in a mouse xenograft model. Further, CFA-appended pyrazolopyrimidine irreversibly inhibited Bruton’s tyrosine kinase with higher target specificity. These results demonstrate the utility of CFA as a new class warheads for TCI.
Discovery and exploitation of inherent reaction features of chlorofluoroacetamide (CFA) as a warhead such as low off-target activity and reversible reactivity with cysteine enable specific covalent inhibition of targeted kinases.
Journal Article
From Nobeyama Radio Observatory to the international project ALMA —Evolution of millimeter and submillimeter wave astronomy in Japan
2022
The establishment of the Nobeyama Radio Observatory (NRO) in 1982 was an important event that greatly influenced the subsequent development of Japanese astronomy. The 45 m radio telescope and the Nobeyama Millimeter Array (NMA) pushed Japanese radio astronomy to the forefront of the world. As a plan beyond the Nobeyama telescopes, the Japanese radio astronomy community considered a large array to achieve unprecedented resolution at millimeter and submillimeter wavelengths under the project name of the Large Millimeter and Submillimeter Array (LMSA). After long and patient discussions and negotiations with the United States and Europe, the LMSA plan eventually led to the ALMA (Atacama Large Millimeter/submillimeter Array) as an international joint project, and the ALMA was inaugurated in 2013. This paper reviews the process from the establishment of the NRO to the realization of the ALMA, including planning of the LMSA, international negotiations, site survey, instrumental developments, and initial science results.
Journal Article
Comparative stability and analytical performance of anti-miroestrol recombinant antibody in different cassettes
2023
Immunoassays are efficient for the phytochemical analysis of various matrices. However, producing an appropriate recombinant antibody for small molecules is challenging, resulting in costly analyses. In this study, we aimed to develop recombinant fragment antigen-binding (Fab) antibodies against miroestrol, a potent phytoestrogen marker of Pueraria candollei. Two expression cassettes of Fab were established for the production of active Fab antibodies using SHuffle® T7 Escherichia coli cells. The orientation of variable fragment heavy chain (VH) and variable fragment light chain (VL) in the expression vector constructs influences the reactivity, stability, and binding specificity of the resultant Fab. Stability testing of antibodies demonstrated that Fab is a more stable form of recombinant antibody than a single-chain variable fragment (ScFv) antibody in all conditions. Based on the obtained Fab, the ELISA specifically detected miroestrol in the range of 39.06–625.00 ng/mL. The intra- and inter-assay precisions were 0.74–2.98% and 6.57–9.76%, respectively. The recovery of authentic miroestrol spiked into samples was 106.70–110.14%, and the limit of detection was 11.07 ng/mL. The results for P. candollei roots and products determined using our developed ELISA with Fab antibody and an ELISA with anti-miroestrol monoclonal antibody (mAb) were consistent (R2 = 0.9758). The developed ELISA can be applied for the quality control of miroestrol derived from P. candollei. Therefore, the appropriate expression platform of Fab resulted in the stable binding specificity of the recombinant antibody and was applicable for immunoassays.Key points• ELISAs with Fab has higher sensitivity than that with ScFv.• Fab is more stable than ScFv.• Fab-based ELISA can be used for miroestrol determination of Pueraria candollei.
Journal Article
Expression of actively soluble antigen-binding fragment (Fab) antibody and GFP fused Fab in the cytoplasm of the engineered Escherichia coli
by
Supaluk Krittanai
,
Waraporn Putalun
,
Hiroyuki Tanaka
in
Animal Anatomy
,
Animal Biochemistry
,
Antibodies
2020
The expression of recombinant antibody fragments in the cytoplasmic space of
Escherichia coli
and the refolding process for restoring the structure and activity of such antibodies are not efficient. Herein, fragment antigen-binding (Fab) antibodies against miroestrol and deoxymiroestrol (MD-Fab) and their fusions with a green fluorescent protein (GFP) were expressed. The reactive MD-Fabs were successfully expressed as soluble and active forms in the cytoplasm of the SHuffle® T7
E. coli
strain. Regarding the construct of MD-Fab alone, V
H
–C
H
1 could associate V
L
–C
L
into Fab in the oxidizing cytoplasm of the
E. coli
strain, and no additional in vitro refolding was needed. In the case of the fusions with GFP, when the C-terminus of V
H
–C
H
1 was linked with the N-terminus of GFP, the MD-Fab binding reactivity was retained, but the fluorescent activity of GFP interfered. When the C-terminus of GFP was linked to the N-terminus of V
L
–C
L
, the binding activity of MD-Fab was not observed. The constructed MD-Fabs had higher specificity toward deoxymiroestrol than the parental monoclonal antibody clone 12G11. In conclusion, MD-Fabs could be expressed using SHuffle® T7
E. coli
cells. This process could be considered an economical, productive, and effective method to produce antibody fragments for immunoassay techniques.
Journal Article
Plant-made antibody against miroestrol: a new platform for expression of full-length immunoglobulin G against small-molecule targets in immunoassays
by
Sae-Foo Worapol
,
Rattanapisit Kaewta
,
Tharita, Kitisripanya
in
Binding
,
Enzyme-linked immunosorbent assay
,
Enzymes
2021
Key messagePlant expression platform is the new source of immunoglobulin G (IgG) toward small low-molecular-weight targets. The plant-made monoclonal antibody-based immunoassay exhibits comparable analytical performance with hybridoma antibody.Immunoassays for small molecules are efficiently applied for monitoring of serum therapeutic drug concentration, food toxins, environmental contamination, etc. Immunoglobulin G (IgG) is usually produced using hybridoma cells, which requires complicated procedures and expensive equipment. Plants can act as alternative and economic hosts for IgG production. However, the production of free hapten (low-molecular-weight target)-recognizing IgG from plants has not been successfully developed yet. The current study aimed at creating a plant platform as an affordable source of IgG for use in immunoassays and diagnostic tools. The functional IgG was expressed in Nicotiana benthamiana leaves infiltrated with Agrobacterium tumefaciens strain GV3101 with recombinant geminiviral vectors (pBY3R) occupying chimeric anti-miroestrol IgG genes. The appropriate assembly between heavy and light chains was achieved, and the yield of expression was 0.57 µg/g fresh N. benthamiana leaves. The binding characteristics of the IgG to miroestrol and binding specificity to related compounds, such as isomiroestrol and deoxymiroestrol, were similar to those of hybridoma-produced IgG (monoclonal antibody, mAb). The plant-based mAbs exhibited high sensitivity for miroestrol (IC50, 23.2 ± 2.1 ng/mL), precision (relative standard deviation ≤ 5.01%), and accuracy (97.8–103% recovery), as determined using quantitative enzyme-linked immunosorbent assay. The validated enzyme-linked immunosorbent assay was applicable to determine miroestrol in plant samples. Overall, the plant-produced functional IgG conserved the binding activity and specificity of the parent IgG derived from mammalian cells. Therefore, the plant expression system may be an efficient and affordable platform for the production of antibodies against low-molecular-weight targets in immunoassays.
Journal Article
Highly sensitive indirect competitive enzyme-linked immunosorbent assay based on a monoclonal antibody against saikosaponin b2 for quality control of Kampo medicines containing Bupleuri radix
2024
Saikosaponins are naturally occurring oleanane-type triterpenoids that are found in
Bupleuri radix
(root of
Bupleurum falcatum
) and exhibit a broad biological activity spectrum. Saikosaponin b2 (SSb2) is the main saikosaponin in Kampo medicine extracts and is a designated quality control marker for the same in the Japanese Pharmacopeia. Although some monoclonal antibodies (mAbs) against saikosaponins have been produced to evaluate the quality of
Bupleuri radix
and related products, anti-SSb2 mAbs have not been used to quantify SSb2 in Kampo medicines. To address this knowledge gap, we herein established a new hybridoma cell line secreting a highly specific anti-SSb2 mAb and developed an indirect competitive enzyme-linked immunosorbent assay (icELISA) based on this mAb for the detection of SSb2 in
Bupleuri radix
-containing Kampo medicines. The generated SSb2-recognized mAb exhibited high specificity to SSb2 in icELISA. The developed assay featured high sensitivity (linearity range = 1.95–125 ng/ml), accuracy, precision and reproducibility (coefficient of variation < 5%), and the thus determined SSb2 contents were strongly correlated with those obtained using liquid chromatograph–mass spectrometer. These results suggest that the anti-SSb2 mAb-based icELISA method can be used for the quality control and standardization of Kampo medicines containing
Bupleuri radix
.
Journal Article
Biocompatible natural deep eutectic solvent-based extraction and cellulolytic enzyme-mediated transformation of Pueraria mirifica isoflavones: a sustainable approach for increasing health-bioactive constituents
by
Boondaree, Siriwarin
,
Phaisan Suppalak
,
Natthapon, Chuphol
in
Aglycones
,
Biocompatibility
,
Biotransformation
2021
The presence of specific gut microflora limits the biotransformation of Pueraria mirifica isoflavone (PMI) glycosides into absorbable aglycones, thus limiting their health benefits. Cellulolytic enzyme-assisted extraction (CAE) potentially solves this issue; however, solvent extraction requires recovery of the hydrophobic products. Here, we established the simultaneous transformation and extraction of PMIs using cellulolytic enzymes and natural deep eutectic solvents (NADESs). The NADES compositions were optimized to allow the use of NADESs as CAE media, and the extraction parameters were optimized using response surface methodology (RSM). The optimal conditions were 14.7% (v/v) choline chloride:propylene glycol (1:2 mol ratio, ChCl:PG) at 56.1 °C for the cellulolytic enzyme (262 mU/mL) reaction in which daidzin and genistin were extracted and wholly transformed to their aglycones daidzein and genistein. The extraction of PMIs using ChCl:PG is more efficient than that using conventional solvents; additionally, biocompatible ChCl:PG enhances cellulolytic enzyme activity, catalyzing the transformation of PMIs into compounds with higher estrogenicity and absorbability.
Journal Article
Application of Monoclonal Antibodies against Naturally Occurring Bioactive Ingredients
2024
Monoclonal antibodies (Mabs) are widely used in a variety of fields, including protein identification, life sciences, medicine, and natural product chemistry. This review focuses on Mabs against naturally occurring active compounds. The preparation of Mabs against various active compounds began in the 1980s, and now there are fewer than 50 types. Eastern blotting, which was developed as an antibody staining method for low-molecular-weight compounds, is useful for its ability to visually represent specific components. In this method, a mixture of lower-molecular-weight compounds, particularly glycosides, are separated by thin-layer chromatography (TLC). The compounds are then transferred to a membrane by heating, followed by treatment with potassium periodate (KIO4) to open the sugar moiety of the glycoside on the membrane to form an aldehyde group. Proteins are then added to form Schiff base bonds to enable adsorption on the membrane. A Mab is bound to the glycoside moiety on the membrane and reacts with a secondary antibody to produce color. Double Eastern blotting, which enables the simultaneous coloration of two glycosides, can be used to evaluate quality and estimate pharmacological effects. An example of staining by Eastern blotting and a component search based on the results will also be presented. A Mab-associated affinity column is a method for isolating antigen molecules in a single step. However, the usefulness of the wash fractions that are not bound to the affinity column is unknown. Therefore, we designated the wash fraction the “knockout extract”. Comparing the nitric oxide (NO) production of a glycyrrhizin (GL)-knockout extract of licorice with a licorice extract revealed that the licorice extract is stronger. Therefore, the addition of GL to the GL-knockout extract of licorice increased NO production. This indicates that GL has synergic activity with the knockout extract. The GL-knockout extract of licorice inhibited high-glucose-induced epithelial–mesenchymal transition in NRK-52E cells, primarily by suppressing the Notch2 pathway. The real active constituent in licorice may be constituents other than GL, which is the causative agent of pseudohyperaldosteronism. This suggests that a GL-knockout extract of licorice may be useful for the treatment of diabetic nephritis.
Journal Article
Honey as a solvent for the green extraction, analysis, and bioconversion of daidzin from Pueraria candollei var. mirifica root
by
Gorawit Yusakul
,
Seiichi Sakamoto
,
Suppalak Phaisan
in
Biological activity
,
Fructose
,
Herbal medicine
2020
Background: Honey has been widely used as a traditional vehicle of herbal medicines. Honey behaves as a natural deep eutectic solvent (NADES) containing β-glucosidase; therefore, it can be used for the extraction and bio-activation of the bioactive compounds of herbs. Objectives: This study aims to apply honey (H-NADES) and a sugar-based NADES (S-NADES) for the extraction, analysis, and bioconversion of daidzin from Pueraria candollei var. mirifica (PM) root. Materials and Methods: Various concentrations of H-NADES and S-NADES (water:sucrose:glucose: fructose, 18:3:18:22 by weight) were used as solvents for extraction. Indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed and validated for monitoring the extraction efficacy. The catalytic reactivity against daidzin of β-glucosidase purified from honey was investigated. Results: Using NADESs as solvents, icELISA was suitable for the reliable determination of daidzin with high sensitivity (1.95-125 ng/mL), specificity (% cross-reactivity ≤ 2.60), and accuracy (98.3-106% daidzin recovery). Daidzin at a concentration of 75.8 ± 3.67 μg/mL was extracted using 50% (v/v) S-NADES, which was the most effective for the extraction compared to H-NADES, water and ethanol. In addition, daidzin was converted to daidzein by honey β-glucosidase. Conclusion: Both S-NADES and H-NADES were useful for the extraction, analysis, and bioconversion of daidzin, and β-glucosidase from honey might enhance the oestrogenic activity and bioavailability of PM phytochemicals.
Journal Article
Bioimprinting as a Receptor for Detection of Kwakhurin
2022
Bioimprinting was performed against ovalbumin (OVA) to confer its binding cavities for kwakhurin (Kwa), an isoflavonoid, produced solely by Pueraria candollei var. mirifica (P. candollei). The characterization of bioimprinted-OVA (biOVA), evaluated by an enzyme-linked immunosorbent assay (ELISA), revealed that it functioned as a specific receptor for Kwa. Using biOVA, two systems, i.e., an indirect competitive ELISA (icELISA) and the even simpler and more rapid competitive enzyme-linked bioimprinted-protein assay (cELBIA), were developed as novel techniques for the quantitative analysis of Kwa in P. candollei and its related products. The two analysis methods were found to have limits of detection (LOD) of 4.0 and 2.5 µg/mL, respectively. The high reliability of the developed icELISA and cELBIA using biOVA was also demonstrated by various validation analyses. Subsequently, bioimprinting was performed using eight other proteins to investigate them as candidate scaffolds for the generation of binding cavities for Kwa. Interestingly, two bioimprinted-IgG monoclonal antibodies (biMAbs) recognized Kwa, but their original binding affinity to hapten was lost. That is, the MAbs obtained a new binding ability to Kwa in exchange for their original binding affinity, raising the possibility that biMAb could be alternatively used as a probe for the quantitative analysis of Kwa as well as biOVA. This is the first report of small molecules recognition by MAbs used as proteins for bioimprinting.
Journal Article