Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
27
result(s) for
"Seiler, Frederik"
Sort by:
Veno-venous extracorporeal membrane oxygenation (vv-ECMO) for severe respiratory failure in adult cancer patients: a retrospective multicenter analysis
by
Kochanek, Jan
,
Bracht Hendrik
,
Brodie, Daniel
in
Blood cancer
,
Cancer
,
Extracorporeal membrane oxygenation
2022
PurposeThe question of whether cancer patients with severe respiratory failure benefit from veno-venous extracorporeal membrane oxygenation (vv-ECMO) remains unanswered. We, therefore, analyzed clinical characteristics and outcomes of a large cohort of cancer patients treated with vv-ECMO with the aim to identify prognostic factors.Methods297 cancer patients from 19 German and Austrian hospitals who underwent vv-ECMO between 2009 and 2019 were retrospectively analyzed. A multivariable cox proportional hazards analysis for overall survival was performed. In addition, a propensity score-matched analysis and a latent class analysis were conducted.ResultsPatients had a median age of 56 (IQR 44–65) years and 214 (72%) were males. 159 (54%) had a solid tumor and 138 (47%) a hematologic malignancy. The 60-day overall survival rate was 26.8% (95% CI 22.1–32.4%). Low platelet count (HR 0.997, 95% CI 0.996–0.999; p = 0.0001 per 1000 platelets/µl), elevated lactate levels (HR 1.048, 95% CI 1.012–1.084; p = 0.0077), and disease status (progressive disease [HR 1.871, 95% CI 1.081–3.238; p = 0.0253], newly diagnosed [HR 1.571, 95% CI 1.044–2.364; p = 0.0304]) were independent adverse prognostic factors for overall survival. A propensity score-matched analysis with patients who did not receive ECMO treatment showed no significant survival advantage for treatment with ECMO.ConclusionThe overall survival of cancer patients who require vv-ECMO is poor. This study shows that the value of vv-ECMO in cancer patients with respiratory failure is still unclear and further research is needed. The risk factors identified in the present analysis may help to better select patients who may benefit from vv-ECMO.
Journal Article
Exposure of patients to di(2-ethylhexy)phthalate (DEHP) and its metabolite MEHP during extracorporeal membrane oxygenation (ECMO) therapy
by
Müller, Johannes
,
Eckert, Elisabeth
,
Kaestner, Franziska
in
Aged
,
Biology and Life Sciences
,
Blood
2020
The plasticizer di(2-ethylhexyl)phthalate (DEHP) is often used for PVC medical devices, that are also largely used for intensive care medical treatments, like extracorporeal membrane oxygenation (ECMO) therapy. Due to the toxicological potential of DEHP, the inner exposure of patients with this plasticizer is a strong matter of concern as many studies have shown a high leaching potential of DEHP into blood. In this study, the inner DEHP exposure of patients undergoing ECMO treatment was investigated. The determined DEHP blood levels of ECMO patients and the patients of the control group ranged from 31.5 to 1009 μg/L (median 156.0 μg/L) and from 19.4 to 75.3 μg/L (median 36.4 μg/L), respectively. MEHP blood levels were determined to range from < LOD to 475 μg/L (median 15.9 μg/L) in ECMO patients and from < LOD to 9.9 μg/L (median 3.7 μg/L) in the control group patients, respectively. Increased DEHP exposure was associated with the number of cannulas and membranes of the ECMO setting, whereas residual diuresis decreased the exposure. Due to the suspected toxicological potential of DEHP, its use in medical devices should be further investigated, in particular for ICU patients with long-term exposure to PVC, like in ECMO therapy.
Journal Article
Consequences of chronic kidney disease in chronic obstructive pulmonary disease
by
Watz, Henrik
,
Jörres, Rudolf
,
Trudzinski, Franziska C.
in
Aged
,
Chronic kidney disease
,
Chronic kidney failure
2019
Background
The combination of chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD) is associated with a higher prevalence of comorbidities and increased mortality. The impact of kidney function on patient-centered outcomes in COPD has not been evaluated.
Methods
Patients from the German COPD and Systemic Consequences - Comorbidities Network (COSYCONET) cohort COPD were analysed. CKD was diagnosed if the estimated glomerular filtration rate (eGFR) measurements were < 60 mL/min/1.73m
2
at study inclusion and six month later. The effect of CKD, on comorbidities, symptoms [modified British Medical Research Council dyspnoea scale], physical capacity [six-minute walk test, and timed up and go] and St George’s Respiratory Questionnaire were analysed. Restricted cubic spline models were used to evaluate a nonlinear relationship between eGFR with patient-centered outcomes, cox survival analysis was applied to evaluate mortality.
Results
2274 patients were analysed, with CKD diagnosed in 161 (7.1%). Spline models adjusted for age, gender, BMI, FEV
1
and cardiovascular comorbidities revealed independent associations between eGFR with modified British Medical Research Council dyspnoea scale, St George’s Respiratory Questionnaire, (
p
< 0.001 and
p
= 0.011), six-minute walk test (
p
= 0.015) and timed up and go (p < 0.001). CKD was associated with increased mortality, independently from for other cardiovascular comorbidities (hazard ratio 2.3; p < 0.001).
Conclusion
These data show that CKD is a relevant comorbidity in COPD patients which impacts on patient-centered outcomes and mortality.
Trial registration
NCT01245933
Journal Article
IL-17C Is a Mediator of Respiratory Epithelial Innate Immune Response
by
Schäfers, Hans-Joachim
,
Bischoff, Markus
,
Wonnenberg, Bodo
in
Animals
,
Bronchi - immunology
,
Bronchi - pathology
2013
The IL-17 family of cytokines consists of at least six members (IL-17A to -F). IL-17 directly activates epithelial cells leading to the expression of inflammatory mediators and antimicrobial factors. Recent studies showed that IL-17C is expressed by epithelial cells. It was the purpose of this study to examine the expression of IL-17 family members in respiratory epithelial cells during bacterial infection. We show that common bacterial pathogens, such as Pseudomonas aeruginosa and Haemophilus influenzae, and ligands of Toll-like receptors 3 and 5 (flagellin, polyI:C) induced the expression and release of IL-17C in cultured human bronchial epithelial cells (HBECs). The expression of IL-17A, -B, -D, or -E was not induced by bacterial stimuli in HBECs. IL-17C enhanced inflammatory responses of respiratory epithelial cells infected with P. aeruginosa. Furthermore, we demonstrate that cigarette smoke suppressed the expression of IL-17C in HBECs in response to bacterial infection and in vivo in the upper airways of mice colonized with H. influenzae. IL-17C could also be detected in bronchial tissue of subjects with infection-related lung diseases. These data show that IL-17C is involved in the innate immune response of respiratory epithelial cells and is suppressed by cigarette smoke.
Journal Article
Time-updated resting heart rate predicts mortality in patients with COPD
by
Stefan, Andreas
,
Alter, Peter
,
Biertz, Frank
in
Cardiovascular diseases
,
Chronic obstructive pulmonary disease
,
Clinical trials
2020
High resting heart rate (RHR) is associated with higher mortality in the general population and in cardiovascular disease. Less is known about the association of RHR with outcome in chronic obstructive pulmonary disease (COPD). In particular, the time-updated RHR (most recent value before the event) appears informative. This is the first study to investigate the association of time-updated RHR with mortality in COPD. We compared the baseline and time-updated RHR related to survival in 2218 COPD patients of the German COSYCONET cohort (COPD and Systemic Consequences—Comorbidities Network). Patients with a baseline RHR > 72 beats per minute (bmp) had a significantly (p = 0.049) higher all-cause mortality risk (adjusted hazard ratio (HR) of 1.37 (1.00–1.87) compared to baseline RHR ≤ 72 bpm. The time-updated RHR > 72 bpm was markedly superior (HR 1.79, 1.30–2.46, p = 0.001). Both, increased baseline and time-updated RHR, were independently associated with low FEV1, low TLCO, a history of diabetes, and medication with short-acting beta agonists (SABAs). In conclusion, increased time-updated RHR is associated with higher mortality in COPD independent of other predictors and superior to baseline RHR. Increased RHR is linked to lung function, comorbidities and medication. Whether RHR is an effective treatment target in COPD, needs to be proven in controlled trials.
Journal Article
Comparison of Serial and Parallel Connections of Membrane Lungs against Refractory Hypoxemia in a Mock Circuit
2023
Extracorporeal membrane oxygenation (ECMO) is an important rescue therapy method for the treatment of severe hypoxic lung injury. In some cases, oxygen saturation and oxygen partial pressure in the arterial blood are low despite ECMO therapy. There are case reports in which patients with such instances of refractory hypoxemia received a second membrane lung, either in series or in parallel, to overcome the hypoxemia. It remains unclear whether the parallel or serial connection is more effective. Therefore, we used an improved version of our full-flow ECMO mock circuit to test this. The measurements were performed under conditions in which the membrane lungs were unable to completely oxygenate the blood. As a result, only the photometric pre- and post-oxygenator saturations, blood flow and hemoglobin concentration were required for the calculation of oxygen transfer rates. The results showed that for a pre-oxygenator saturation of 45% and a total blood flow of 10 L/min, the serial connection of two identical 5 L rated oxygenators is 17% more effective in terms of oxygen transfer than the parallel connection. Although the idea of using a second membrane lung if refractory hypoxia occurs is intriguing from a physiological point of view, due to the invasiveness of the solution, further investigations are needed before this should be used in a wider clinical setting.
Journal Article
Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells
by
Herr, Christian
,
Polke, Markus
,
Beisswenger, Christoph
in
Animals
,
Cell Line
,
Cystic fibrosis
2017
Chronic diseases of the respiratory tract, such as cystic fibrosis, are associated with mucosal and systemic hypoxia. Innate immune functions of airway epithelial cells are required to prevent and control infections of the lung parenchyma. The transcription factor hypoxia-inducible factor 1α (HIF-1α) regulates cellular adaptation to low oxygen conditions. Here, we show that hypoxia and HIF-1α regulate innate immune mechanisms of cultured human bronchial epithelial cells (HBECs). Exposure of primary HBECs to hypoxia or the prolyl hydroxylase inhibitor dimethyloxaloylglycine (DMOG) resulted in a significantly decreased expression of inflammatory mediators (IL-6, IFN-γ-induced protein 10) in response to ligands for TLRs (flagellin, polyI:C) and Pseudomonas aeruginosa, whereas the expression of inflammatory mediators was not affected by hypoxia or DMOG in the absence of microbial factors. Small interfering RNA-mediated knockdown of HIF-1α in HBECs and in the bronchial epithelial cell line Calu-3 resulted in increased expression of inflammatory mediators. The inflammatory response was decreased in lungs of mice stimulated with inactivated P. aeruginosa under hypoxia. These data suggest that hypoxia suppresses the innate immune response of airway epithelial cells via HIF-1α.
Journal Article
A mock circulation loop to test extracorporeal CO2 elimination setups
by
Schwärzel, Leonie S
,
Muellenbach, Ralf M
,
Schenk, Joachim
in
Acidification
,
Animal research
,
Blood
2020
BackgroundExtracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter).ResultsWith the presented ECCO2R mock, CO2 removal rates comparable to previous studies were obtained. The mock works with either fresh porcine blood or diluted expired human packed red blood cells. However, fresh porcine blood was preferred because of better handling and availability. In the second step of this work, hemoglobin concentration was identified as an important factor for CO2 removal. In the second scenario, an air-driven ECCO2R setup showed only a slightly lower CO2 wash-out than the same setup with pure oxygen as sweep gas. In the last scenario, the low-flow ECCO2R, the blood flow at the test membrane lung was successfully raised with a recirculation channel without the need to increase cannula flow. Low recirculation ratios resulted in increased efficiency, while high recirculation ratios caused slightly reduced CO2 removal rates. Acidification of the CO2 depleted blood in the recirculation channel caused an increase in CO2 removal rate.ConclusionsWe demonstrate a simple and cost effective, yet powerful, “in-vitro” ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models.
Journal Article
A Novel Mock Circuit to Test Full-Flow Extracorporeal Membrane Oxygenation
2022
Extracorporeal membrane oxygenation (ECMO) has become an important therapeutic approach in the COVID-19 pandemic. The development and research in this field strongly relies on animal models; however, efforts are being made to find alternatives. In this work, we present a new mock circuit for ECMO that allows measurements of the oxygen transfer rate of a membrane lung at full ECMO blood flow. The mock utilizes a large reservoir of heparinized porcine blood to measure the oxygen transfer rate of the membrane lung in a single passage. The oxygen transfer rate is calculated from blood flow, hemoglobin value, venous saturation, and post-membrane arterial oxygen pressure. Before the next measuring sequence, the blood is regenerated to a venous condition with a sweep gas of nitrogen and carbon dioxide. The presented mock was applied to investigate the effect of a recirculation loop on the oxygen transfer rate of an ECMO setup. The recirculation loop caused a significant increase in post-membrane arterial oxygen pressure (paO2). The effect was strongest for the highest recirculation flow. This was attributed to a smaller boundary layer on gas fibers due to the increased blood velocity. However, the increase in paO2 did not translate to significant increases in the oxygen transfer rate because of the minor significance of physically dissolved oxygen for gas transfer. In conclusion, our results regarding a new ECMO mock setup demonstrate that recirculation loops can improve ECMO performance, but not enough to be clinically relevant.
Journal Article
Comparison of Circular and Parallel-Plated Membrane Lungs for Extracorporeal Carbon Dioxide Elimination
by
Schwärzel, Leonie S.
,
Muellenbach, Ralf M.
,
Dinh, Quoc Thai
in
ARDS
,
Blood flow
,
Carbon dioxide
2021
Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock circuit to compare the CO2 removal capacity of circular versus parallel-plated membrane lungs at different sweep gas flow rates (0.5, 2, 4, 6 L/min) and blood flow rates (0.3 L/min, 0.9 L/min). For both designs, two low-flow polypropylene membrane lungs (Medos Hilte 1000, Quadrox-i Neonatal) and two mid-flow polymethylpentene membrane lungs (Novalung Minilung, Quadrox-iD Pediatric) were compared. While the parallel-plated Quadrox-iD Pediatric achieved the overall highest CO2 removal rates under medium and high sweep gas flow rates, the two circular membrane lungs performed relatively better at the lowest gas flow rate of 0.5 L/min. The low-flow Hilite 1000, although overall better than the Quadrox i-Neonatal, had the most significant advantage at a gas flow of 0.5 L/min. Moreover, the circular Minilung, despite being significantly less efficient than the Quadrox-iD Pediatric at medium and high sweep gas flow rates, did not show a significantly worse CO2 removal rate at a gas flow of 0.5 L/min but rather a slight advantage. We suggest that circular membrane lungs have an advantage at low sweep gas flow rates due to reduced shunting as a result of their fiber orientation. Efficiency for such low gas flow scenarios might be relevant for possible future portable ECCO2R devices.
Journal Article