Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
79 result(s) for "Seirian Sumner"
Sort by:
The molecular basis of socially mediated phenotypic plasticity in a eusocial paper wasp
Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior. Connecting genotypes to complex social behaviour is challenging. Taylor et al. use machine learning to show a strong response of caste-associated gene expression to queen loss, wherein individual wasp’s expression profiles become intermediate between queen and worker states, even in the absence of behavioural changes.
Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species
Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade‐off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20‐km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of seminatural vegetation, including managed agri‐environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that management of landscape composition and configuration has the potential to reduce foraging distances across a range of bumble bee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri‐environment schemes, aimed at providing foraging habitat for bumble bees and enhancing crop pollination services.
Bumblebee family lineage survival is enhanced in high-quality landscapes
Analysis of three wild-caught bumblebee species shows that family lineage survival and persistence is significantly increased between successive colony cycle stages with the proportion of high-value foraging habitat near the natal colony. Queen bee conservation Agricultural intensification is a major cause of the global decline in insect pollinators. In this UK-based field experiment, Claire Carvell and colleagues show that bumblebee colonies located close to high-value foraging habitats, including spring floral resources, are more likely to produce daughter queens that survive winter hibernation and emerge in the spring to start a new colony. Their findings add to the evidence that conservation interventions targeted at the landscape level have a positive effect on wild pollinators in agricultural settings. Insect pollinators such as bumblebees ( Bombus spp.) are in global decline 1 , 2 . A major cause of this decline is habitat loss due to agricultural intensification 3 . A range of global and national initiatives aimed at restoring pollinator habitats and populations have been developed 4 , 5 . However, the success of these initiatives depends critically upon understanding how landscape change affects key population-level parameters, such as survival between lifecycle stages 6 , in target species. This knowledge is lacking for bumblebees, because of the difficulty of systematically finding and monitoring colonies in the wild. We used a combination of habitat manipulation, land-use and habitat surveys, molecular genetics 7 and demographic and spatial modelling to analyse between-year survival of family lineages in field populations of three bumblebee species. Here we show that the survival of family lineages from the summer worker to the spring queen stage in the following year increases significantly with the proportion of high-value foraging habitat, including spring floral resources, within 250–1,000 m of the natal colony. This provides evidence for a positive impact of habitat quality on survival and persistence between successive colony cycle stages in bumblebee populations. These findings also support the idea that conservation interventions that increase floral resources at a landscape scale and throughout the season have positive effects on wild pollinators in agricultural landscapes.
How social skills are shaped in an ever-changing world
Gordon has spent decades studying the natural history of two ant species that live in very different environments, paying acute attention to how the insects' stirring, dynamic habitats shape their behaviour. Each foraging turtle ant lays a trail of pheromones wherever she goes - independent of whether she has discovered a food source or not - while following the trails laid by others. [...]the idea that dynamic environments help to shape social behaviour is already part of the accepted theory of social evolution.
Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps
A key mechanistic hypothesis for the evolution of division of labour in social insects is that a shared set of genes co-opted from a common solitary ancestral ground plan (a genetic toolkit for sociality) regulates caste differentiation across levels of social complexity. Using brain transcriptome data from nine species of vespid wasps, we test for overlap in differentially expressed caste genes and use machine learning models to predict castes using different gene sets. We find evidence of a shared genetic toolkit across species representing different levels of social complexity. We also find evidence of additional fine-scale differences in predictive gene sets, functional enrichment and rates of gene evolution that are related to level of social complexity, lineage and of colony founding. These results suggest that the concept of a shared genetic toolkit for sociality may be too simplistic to fully describe the process of the major transition to sociality. A key hypothesis for the evolution of division of labour in social insects is that a shared set of genes – a genetic toolkit - regulates reproductive castes across species. Here, the authors analyze brain transcriptomes from nine species of social wasps to identify the factors that shape this toolkit.
New genomic resources inform transcriptomic responses to heavy metal toxins in the common Eastern bumble bee Bombus impatiens
Background The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements. This species is common in agricultural and urban environments, and heavy metal contaminants produced by industrial processes can negatively impact it. To begin to identify possible mechanisms underlying responses to these toxins, we used RNA-sequencing to examine how exposure to a cocktail of four heavy metals at field-realistic levels from industrial areas affected B. impatiens worker gene expression. Results PacBio long-read sequencing resulted in 544x coverage of the genome, and HiC technology was used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high quality, chromosome-level assembly. The sequenced genome size is 266.6 Mb and BRAKER3 annotation produced 13,938 annotated genes. The genome and annotation show high completeness, with ≥ 96% of conserved Eukaryota and Hymenoptera genes present in both the assembly and annotated genes. RNA sequencing of heavy metal exposed workers revealed 603 brain and 34 fat body differentially expressed genes. In the brain, differentially expressed genes had biological functions related to chaperone activity and protein folding. Conclusions Our data represent a large improvement in genomic resources for this important model species—with 10% more genome coverage than previously available, and a high-quality assembly into 18 chromosomes, the expected karyotype for this species. The new gene annotation added 777 new genes. Altered gene expression in response to heavy metal exposure suggests a possible mechanism for how these urban toxins are negatively impacting bee health, specifically by altering protein folding in the brain. Overall, these data are useful as a general high quality genomic resource for this species, and provide insight into mechanisms underlying tissue-specific toxicological responses of bumble bees to heavy metals.
Contrasting responses of native ant communities to invasion by an ant invader, Linepithema humile
Invasive alien species pose a serious threat to the integrity and function of natural ecosystems. Understanding how these invaders alter natural communities is therefore an important aspect in predicting the likely future outcomes of biological invasions. Many studies have documented the consequences of invasive alien species on native community structure, through the displacement and local extinction of native species. However, sampling methods and intensities are rarely standardised across such studies, meaning that it is not clear whether differences in response among native communities to the same invader species are due to biological differences between the invaded regions, or differences in the methodologies used. Here we use a matched sampling methodology to compare the effects of the Argentine ant (Linepithema humile Mayr) on native ant community assemblages in two distinct biogeographical regions that share similar ecologies: Girona (Spain) and Jonkershoek Nature Reserve (South Africa). We found a strong negative association between L. humile presence and native ant species richness within both geographic regions. However, the effects differed between the two study regions: in Girona, a single native ant species (Plagiolepis pygmaea) persisted in invaded sites; by contrast, substantially more native ant species persisted at invaded sites in Jonkershoek Nature Reserve. In addition, in Jonkershoek Nature Reserve, the abundance of certain native species appeared to increase in the presence of L. humile. This study therefore demonstrates the potential variable effects of an invasive species in contrasting locations within different biogeographical regions. Future work should explore the causes of this differential resistance among communities and expand standardised sampling approaches to more invaded zones to further explore how local biotic or abiotic conditions of a region determine the nature and extent of impact of L. humile invasion on native ant communities.
Putting hornets on the genomic map
Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia . The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.
Detection and Replication of Moku Virus in Honey Bees and Social Wasps
Transmission of honey bee viruses to other insects, and vice versa, has previously been reported and the true ecological importance of this phenomenon is still being realized. Members of the family Vespidae interact with honey bees via predation or through the robbing of brood or honey from colonies, and these activities could result in virus transfer. In this study we screened Vespa velutina and Vespa crabro collected from Europe and China and also honey bees and Vespula vulgaris from the UK for Moku virus (MV), an Iflavirus first discovered in the predatory social wasp Vespula pensylvanica in Hawaii. MV was found in 71% of Vespula vulgaris screened and was also detected in UK Vespa crabro. Only seven percent of Vespa velutina individuals screened were MV-positive and these were exclusively samples from Jersey. Of 69 honey bee colonies screened, 43% tested positive for MV. MV replication was confirmed in Apis mellifera and Vespidae species, being most frequently detected in Vespula vulgaris. MV sequences from the UK were most similar to MV from Vespula pensylvanica compared to MV from Vespa velutina in Belgium. The implications of the transfer of viruses between the Vespidae and honey bees are discussed.
Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris
Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris . Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers) and a total of 1,610,742 expressed sequence tags (ESTs) were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while olfactory-related genes exhibited differential expression with a wider repertoire of gene expression within adults, especially sexuals, in comparison to immature stages. As there is an absence of replication across the samples, the results of this study are preliminary but provide a number of candidate genes which may be related to distinct phenotypic stage expression. This comprehensive transcriptome catalogue will provide an important gene discovery resource for directed programmes in ecology, evolution and conservation of a key pollinator.