Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Seitzinger, Sybil P"
Sort by:
Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions
Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.
Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures
In this paper, we estimate the inputs of nitrogen (N) and exports of dissolved inorganic nitrogen (DIN) from the Changjiang River to the estuary for the period 1970–2003, by using the global NEWS‐DIN model. Modeled DIN yields range from 260 kg N km−2 yr−1 in 1970 to 895 kg N km−2 yr−1 in 2003, with an increasing trend. The study demonstrated a varied contribution of different N inputs to river DIN yields during the period 1970–2003. Chemical fertilizer and manure together contributed about half of the river DIN yields, while atmospheric N deposition contributed an average of 21% of DIN yields in the period 1970–2003. Biological N fixation contributed 40% of DIN yields in 1970, but substantially decreased to 13% in 2003. Point sewage N input also showed a decreasing trend in contribution to DIN yields, with an average of 8% over the whole period. We also discuss possible future trajectories of DIN export based on the Global NEWS implementation of the Millennium Ecosystem Assessment scenarios. Our result indicates that anthropogenically enhanced N inputs dominate and will continue to dominate river DIN yields under changing human pressures in the basin. Therefore, nitrogen pollution is and will continue to be a great challenge to China.
The regional and global significance of nitrogen removal in lakes and reservoirs
Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentie water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentie N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentie N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentie systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year⁻¹ from watersheds globally. Small lakes (<50 km²) were critical in the analysis, retaining almost half (9.3 Tg N year⁻¹) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0-100%) both as a function of climate and the density of lentie systems. Although reservoirs occupy just 6% of the global lentie surface area, we estimate they retain ~33% of the total N removed by lentie systems, due to a combination of higher drainage ratios (catchment surface areailake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentie systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale.
Planetary Stewardship in an Urbanizing World: Beyond City Limits
Cities are rapidly increasing in importance as a major factor shaping the Earth system, and therefore, must take corresponding responsibility. With currently over half the world's population, cities are supported by resources originating from primarily rural regions often located around the world far distant from the urban loci of use. The sustainability of a city can no longer be considered in isolation from the sustainability of human and natural resources it uses from proximal or distant regions, or the combined resource use and impacts of cities globally. The world's multiple and complex environmental and social challenges require interconnected solutions and coordinated governance approaches to planetary stewardship. We suggest that a key component of planetary stewardship is a global system of cities that develop sustainable processes and policies in concert with its non-urban areas. The potential for cities to cooperate as a system and with rural connectivity could increase their capacity to effect change and foster stewardship at the planetary scale and also increase their resource security.
Nitrogen stewardship in the Anthropocene
How can nitrogen emissions be reduced and reused to reduce pressure on ecosystems? Nitrogen compounds, mainly from agriculture and sewage, are causing widespread eutrophication of estuaries and coastal waters ( 1 ). Rapid growth of algal blooms can deprive ecosystems of oxygen when the algae decay, with sometimes extensive ecological and economic effects. Nitrogen oxides from fossil fuel combustion also contribute to eutrophication, and nitrous oxide, N 2 O, is an extremely powerful greenhouse gas (GHG). On page 405 of this issue, Sinha et al. confirm that climate change is worsening nitrogen pollution, notably coastal eutrophication ( 2 ). The results highlight the urgent need to control nitrogen pollution. Solutions may be found by drawing on decarbonization efforts in the energy sector.
Bioavailability of DON from Natural and Anthropogenic Sources to Estuarine Plankton
Utilization of dissolved organic nitrogen (DON) from natural (forests) and anthropogenic (animal pastures, urban/suburban storm water runoff) sources (three sites per source) by estuarine plankton communities was examined in spring, summer, and fall. The proportion of DON utilized ranged from 0 to 73%. Overall, urban/suburban storm water runoff had a higher proportion of bioavailable DON (59% ± 11) compared to agricultural pastures (30% ± 14) and forests (23% ± 19). DON bioavailability varied seasonally; however, the seasonal pattern differed for the three sources. Bacterial production increased linearly with the amount of DON utilized across all sources and seasons; the rate of increase was approximately five times greater per micromole of N as DON used relative to dissolved inorganic N (DIN) used. Although phytoplankton production generally increased with DON addition, the increased production was not correlated with the amount of DON utilized, suggesting that a variable portion of dissolved organic matter (DOM)-N was directly or indirectly available to the phytoplankton. This indicates that phytoplankton production is not a good measure of the amount of bioavailable DON, and measurements of the amount of bioavailable DON based on bacterial responses alone might not reflect N available to phytoplankton. Preliminary seasonal budgets of bioavailable N (DIN plus bioavailable DON) as a function of land use suggest that ~80% of the total dissolved N (TDN) from urban/suburban runoff is bioavailable, whereas a lower proportion (20-60%) of TDN is bioavailable from forests and pastures. N budgets for aquatic ecosystems based on only DIN loading underestimate bioavailable N loading, whereas total N or TDN budgets overestimate bioavailable N inputs.
Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance
Denitrification occurs in essentially all river, lake, and coastal marine ecosystems that have been studied. In general, the range of denitrification rates measured in coastal marine sediments is greater than that measured in lake or river sediments. In various estuarine and coastal marine sediments, rates commonly range between 50 and 250 µmol N m−2 h−1, with extremes from 0 to 1,067. Rates of denitrification in lake sediments measured at near‐ambient conditions range from 2 to 171 µmol N m−2 h−1. Denitrification rates in river and stream sediments range from 0 to 345 µmol N m−2 h−1. The higher rates are from systems that receive substantial amounts of anthropogenic nutrient input. In lakes, denitrification also occurs in low oxygen hypolimnetic waters, where rates generally range from 0.2 to 1.9 µmol N liter−1 d−1. In lakes where denitrification rates in both the water and sediments have been measured, denitrification is greater in the sediments. The major source of nitrate for denitrification in most river, lake, and coastal marine sediments underlying an aerobic water column is nitrate produced in the sediments, not nitrate diffusing into the sediments from the overlying water. During the mineralization of organic matter in sediments, a major portion of the mineralized nitrogen is lost from the ecosystem via denitrification. In freshwater sediments, denitrification appears to remove a larger percentage of the mineralized nitrogen. N2 fluxes accounted for 76–100% of the sediment‐water nitrogen flux in rivers and lakes, but only 15–70% in estuarine and coastal marine sediments. Benthic N2O fluxes were always small compared to N, fluxes. The loss of nitrogen via denitrification exceeds the input of nitrogen via N2 fixation in almost all river, lake, and coastal marine ecosystems in which both processes have been measured. Denitrification is also important relative to other inputs of fixed N in both freshwater and coastal marine ecosystems. In the two rivers where both denitrification measurements and N input data were available, denitrification removed an amount of nitrogen equivalent to 7 and 35% of the external nitrogen loading. In six lakes and six estuaries where data are available, denitrification is estimated to remove an amount of nitrogen equivalent to between 1 and 36% of the input to the lakes and between 20 and 50% of the input to the estuaries.
The Nitrogen Cascade
Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N2) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth’s atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N2.
Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes
The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed.