Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Sekiguchi, Fumiya"
Sort by:
Strong spin-orbit coupling inducing Autler-Townes effect in lead halide perovskite nanocrystals
Manipulation of excitons via coherent light-matter interaction is a promising approach for quantum state engineering and ultrafast optical modulation. Various excitation pathways in the excitonic multilevel systems provide controllability more efficient than that in the two-level system. However, these control schemes have been restricted to limited control-light wavelengths and cryogenic temperatures. Here, we report that lead halide perovskites can lift these restrictions owing to their multiband structure induced by strong spin-orbit coupling. Using CsPbBr 3 perovskite nanocrystals, we observe an anomalous enhancement of the exciton energy shift at room temperature with increasing control-light wavelength from the visible to near-infrared region. The enhancement occurs because the interconduction band transitions between spin-orbit split states have large dipole moments and induce a crossover from the two-level optical Stark effect to the three-level Autler-Townes effect. Our finding establishes a basis for efficient coherent optical manipulation of excitons utilizing energy states with large spin-orbit splitting. Here, Yumoto et al. demonstrate that for a halide perovskite with large spin-orbit splitting the optical Stark effect can give way to a three level Autler-Townes effect in the near-infrared region. The multiband nature of the effect potentially allows for further optical control over quantum states.
Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields
The ability to drive a spin system to state far from the equilibrium is indispensable for investigating spin structures of antiferromagnets and their functional nonlinearities for spintronics. While optical methods have been considered for spin excitation, terahertz (THz) pulses appear to be a more convenient means of direct spin excitation without requiring coupling between spins and orbitals or phonons. However, room-temperature responses are usually limited to small deviations from the equilibrium state because of the relatively weak THz magnetic fields in common approaches. Here, we studied the magnetization dynamics in a HoFeO 3 crystal at room temperature. A custom-made spiral-shaped microstructure was used to locally generate a strong multicycle THz magnetic near field perpendicular to the crystal surface; the maximum magnetic field amplitude of about 2 T was achieved. The observed time-resolved change in the Faraday ellipticity clearly showed second- and third-order harmonics of the magnetization oscillation and an asymmetric oscillation behaviour. Not only the ferromagnetic vector M but also the antiferromagnetic vector L plays an important role in the nonlinear dynamics of spin systems far from equilibrium. The authors studied HoFeO 3 crystal using multicycle THz magnetic pulses enhanced strongly by spiral-shaped microstructure. The observed Faraday ellipticity demonstrates second- and third-order harmonics of the magnetization oscillation and an asymmetric oscillation behavior.
Anomalous behavior of critical current in a superconducting film triggered by DC plus terahertz current
The critical current in a superconductor (SC) determines the performance of many SC devices, including SC diodes which have attracted recent attention. Hitherto, studies of SC diodes are limited in the DC-field measurements, and their performance under a high-frequency current remains unexplored. Here, we conduct the first investigation on the interaction between the DC and terahertz (THz) current in a SC artificial superlattice. We found that the DC critical current is sensitively modified by THz pulse excitations in a nontrivial manner. In particular, at low-frequency THz excitations below the SC gap, the critical current becomes sensitive to the THz-field polarization direction. Furthermore, we observed anomalous behavior in which a supercurrent flows with an amplitude larger than the modified critical current. Assuming that vortex depinning determines the critical current, we show that the THz-current-driven vortex dynamics reproduce the observed behavior. While the delicate nonreciprocity in the critical current is obscured by the THz pulse excitations, the interplay between the DC and THz current causes a non-monotonic SC/normal-state switching with current amplitude, which can pave a pathway to developing SC devices with novel functionalities. The authors study the [Nb/V/Ta] superconducting artificial superlattice, known to support a superconducting diode effect, by pulsed THz spectroscopy and simultaneous transport. They found a non-monotonic switching between the superconducting and normal state, which can be explained if the THz-driven vortex depinning determines the critical current.
Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8
Formation of magnetic order alters the character of spin excitations, which then affects transport properties. We investigate the photoexcited ultrafast spin dynamics in different magnetic phases in Néel-type skyrmion host GaV 4 S 8 with time-resolved magneto-optical Kerr effect experiments. The coherent spin precession, whose amplitude is enhanced in the skyrmion-lattice phase, shows a signature of phase coexistence across the magnetic phase transitions. The incoherent spin relaxation dynamics slows down by a factor of two in the skyrmion-lattice/cycloid phases, indicating significant decrease in thermal conductivity triggered by a small change of magnetic field. The slow heat diffusion in the skyrmion-lattice/cycloid phases is attributed to the stronger magnon scattering off the domain walls formed in abundance in the skyrmion-lattice/cycloid phase. These results highlight the impact of spatial spin structure on the ultrafast heat transport in spin systems, providing a useful insight for the step toward ultrafast photocontrol of the magnets with novel spin orders. Skyrmions are a topological magnetic texture that have garnered considerable interest for various technological applications. Here, Sekiguchi et al. investigate the ultrafast optical response of GaV4S6, and find a significant reduction in the thermal conductivity in the skyrmion phase.
Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids
Since the discovery of high-order harmonic generation (HHG) in solids 1 – 3 , much effort has been devoted to understand its generation mechanism and both inter- and intraband transitions are known to be essential 1 – 10 . However, intraband transitions are affected by the electronic structure of a solid, and how they contribute to nonlinear carrier generation and HHG remains an open question. Here we use mid-infrared laser pulses to study HHG in CdSe and CdS quantum dots, where quantum confinement can be used to control the intraband transitions. We find that both HHG intensity per excited volume and generated carrier density increase when the average quantum dot size is increased from about 2 to 3 nm. We show that the reduction in sub-bandgap energy in larger quantum dots enhances intraband transitions, and this—in turn—increases the rate of photocarrier injection by coupling with interband transitions, resulting in enhanced HHG. Both inter- and intraband transitions contribute to high-harmonic generation in solids, but their exact roles are not fully understood. Experiments with quantum dots show that enhanced intraband transitions lead to increased carrier injection and thus enhanced harmonic generation.
Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV 4 S 8
Formation of magnetic order alters the character of spin excitations, which then affects transport properties. We investigate the photoexcited ultrafast spin dynamics in different magnetic phases in Néel-type skyrmion host GaV S with time-resolved magneto-optical Kerr effect experiments. The coherent spin precession, whose amplitude is enhanced in the skyrmion-lattice phase, shows a signature of phase coexistence across the magnetic phase transitions. The incoherent spin relaxation dynamics slows down by a factor of two in the skyrmion-lattice/cycloid phases, indicating significant decrease in thermal conductivity triggered by a small change of magnetic field. The slow heat diffusion in the skyrmion-lattice/cycloid phases is attributed to the stronger magnon scattering off the domain walls formed in abundance in the skyrmion-lattice/cycloid phase. These results highlight the impact of spatial spin structure on the ultrafast heat transport in spin systems, providing a useful insight for the step toward ultrafast photocontrol of the magnets with novel spin orders.
Rate equation analysis on the dynamics of first-order exciton Mott transition
We performed a rate equation analysis on the dynamics of exciton Mott transition (EMT) with assuming a detailed balance between excitons and unbound electron-hole (e-h) pairs. Based on the Saha equation with taking into account the empirical expression for the band-gap renormalization effect caused by the unbound e-h pairs, we show that the ionization ratio of excitons exhibits a bistability as a function of total e-h pair density at low temperatures. We demonstrate that an incubation time emerges in the dynamics of EMT from oversaturated exciton gas phase on the verge of the bistable region. The incubation time shows a slowing down behavior when the pair density approaches toward the saddle-node bifurcation of the hysteresis curve of the exciton ionization ratio.
Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields
The ability to drive a spin system to state far from the equilibrium is indispensable for investigating spin structures of antiferromagnets and their functional nonlinearities for spintronics. While optical methods have been considered for spin excitation, terahertz (THz) pulses appear to be a more convenient means of direct spin excitation without requiring coupling between spins and orbitals or phonons. However, room-temperature responses are usually limited to small deviations from the equilibrium state because of the relatively weak THz magnetic fields in common approaches. Here, we studied the magnetization dynamics in a HoFeO3 crystal at room temperature. A custom-made spiral-shaped microstructure was used to locally generate a strong multicycle THz magnetic near field perpendicular to the crystal surface; the maximum magnetic field amplitude of about 2 T was achieved. The observed time-resolved change in the Faraday ellipticity clearly showed second- and third-order harmonics of the magnetization oscillation and an asymmetric oscillation behaviour. Not only the ferromagnetic vector M but also the antiferromagnetic vector L plays an important role in the nonlinear dynamics of spin systems far from equilibrium.
Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids
Since the discovery of high-order harmonic generation (HHG) in solids, much effort has been devoted to understanding its generation mechanism and both interband and intraband transitions are known to be essential. However, intraband transitions are affected by the electronic structure of a solid, and how they contribute to nonlinear carrier generation and HHG remains an open question. Here, we use mid-infrared laser pulses to study HHG in CdSe and CdS quantum dots (QDs), where quantum confinement can be used to control the intraband transitions. We find that both the HHG intensity per excited volume and the generated carrier density increase when the average QD size is increased from about 2 nm to 3 nm. We show that the reduction of the subband gap energy in larger QDs enhances intraband transitions, and this in turn increases the rate of photocarrier injection by coupling with interband transitions, resulting in enhanced HHG.
Single-Shot Terahertz Time-Domain Spectroscopy in Pulsed High Magnetic Fields
We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.