Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Selt, Florian"
Sort by:
Response to trametinib treatment in progressive pediatric low-grade glioma patients
2020
IntroductionA hallmark of pediatric low-grade glioma (pLGG) is aberrant signaling of the mitogen activated protein kinase (MAPK) pathway. Hence, inhibition of MAPK signaling using small molecule inhibitors such as MEK inhibitors (MEKi) may be a promising strategy.MethodsIn this multi-center retrospective centrally reviewed study, we analyzed 18 patients treated with the MEKi trametinib for progressive pLGG as an individual treatment decision between 2015 and 2019. We have investigated radiological response as per central radiology review, molecular classification and investigator observed toxicity.ResultsWe observed 6 partial responses (PR), 2 minor responses (MR), and 10 stable diseases (SD) as best overall responses. Disease control rate (DCR) was 100% under therapy. Responses were observed in KIAA1549:BRAF- as well as neurofibromatosis type 1 (NF1)-driven tumors. Median treatment time was 12.5 months (range: 2 to 27 months). Progressive disease was observed in three patients after cessation of trametinib treatment within a median time of 3 (2–4) months. Therapy related adverse events occurred in 16/18 patients (89%). Eight of 18 patients (44%) experienced severe adverse events (CTCAE III and/or IV; most commonly skin rash and paronychia) requiring dose reduction in 6/18 patients (33%), and discontinuation of treatment in 2/18 patients (11%).ConclusionsTrametinib was an active and feasible treatment for progressive pLGG leading to disease control in all patients. However, treatment related toxicity interfered with treatment in individual patients, and disease control after MEKi withdrawal was not sustained in a fraction of patients. Our data support in-class efficacy of MEKi in pLGGs and necessity for upfront randomized testing of trametinib against current standard chemotherapy regimens.
Journal Article
Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets
2016
With the number of prognostic and predictive genetic markers in neuro-oncology steadily growing, the need for comprehensive molecular analysis of neuropathology samples has vastly increased. We therefore developed a customized enrichment/hybrid-capture-based next-generation sequencing (NGS) gene panel comprising the entire coding and selected intronic and promoter regions of 130 genes recurrently altered in brain tumors, allowing for the detection of single nucleotide variations, fusions, and copy number aberrations. Optimization of probe design, library generation and sequencing conditions on 150 samples resulted in a 5-workday routine workflow from the formalin-fixed paraffin-embedded sample to neuropathological report. This protocol was applied to 79 retrospective cases with established molecular aberrations for validation and 71 prospective cases for discovery of potential therapeutic targets. Concordance of NGS compared to established, single biomarker methods was 98.0 %, with discrepancies resulting from one case where a
TERT
promoter mutation was not called by NGS and three ATRX mutations not being detected by Sanger sequencing. Importantly, in samples with low tumor cell content, NGS was able to identify mutant alleles that were not detectable by traditional methods. Information derived from NGS data identified potential targets for experimental therapy in 37/47 (79 %) glioblastomas, 9/10 (90 %) pilocytic astrocytomas, and 5/14 (36 %) medulloblastomas in the prospective target discovery cohort. In conclusion, we present the settings for high-throughput, adaptive next-generation sequencing in routine neuropathology diagnostics. Such an approach will likely become highly valuable in the near future for treatment decision making, as more therapeutic targets emerge and genetic information enters the classification of brain tumors.
Journal Article
Association of phosphorylation status of ERK and genetic MAPK alterations in pediatric tumors
2025
The mitogen-activated protein kinase (MAPK) pathway is one of the most frequently altered pathways in pediatric cancer. Activating genomic MAPK-alterations and phosphorylation of the MAPK downstream target ERK (pERK) were analyzed in the PTT2.0 registry to identify potential targets for MAPK-directed treatment in relapsed pediatric CNS tumors, sarcomas and other solid tumors. The present study investigates the association of ERK phosphorylation and genomic MAPK pathway alterations (mutations, fusions, amplifications) in the PTT2.0 dataset. PTT2.0 registry cases with available genomic and immunohistochemistry data (
n
= 235) were included. Samples with and without detected activating genomic MAPK alterations were compared regarding ERK phosphorylation, quantified by immunohistochemistry H-score. The association of pERK intensity and the presence of MAPK alteration was analyzed using a univariable binary logistic regression model.The mean pERK H-score was significantly higher in samples with activating genomic MAPK alterations. pERK H-score positively correlated with the presence of MAPK alterations. However, the pERK H-score predicted MAPK alterations only with a sensitivity of 58.3% and a specificity of 83.8%. The highest mean pERK H-scores were observed in low-grade gliomas, enriched for MAPK alterations, and in ependymoma, where MAPK alterations were absent. Although there is an association between pERK level and activating genetic MAPK alterations, the predictive power of pERK H-score for genetic MAPK alterations is low in pediatric tumors. Tumors/groups with absent genetic MAPK alterations but high pERK indicate a dissociation of the two parameters, as well as a possible MAPK pathway activation in the absence of genetic MAPK alterations.
Journal Article
Aurora Kinases as Targets in Drug-Resistant Neuroblastoma Cells
by
Michaelis, Martin
,
Löschmann, Nadine
,
Cinatl, Jindrich
in
Antineoplastic Agents - pharmacology
,
Apoptosis
,
Apoptosis - drug effects
2014
Aurora kinase inhibitors displayed activity in pre-clinical neuroblastoma models. Here, we studied the effects of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) and the aurora kinase inhibitor alisertib (MLN8237) that shows some specificity for aurora kinase A over aurora kinase B in a panel of neuroblastoma cell lines with acquired drug resistance. Both compounds displayed anti-neuroblastoma activity in the nanomolar range. The anti-neuroblastoma mechanism included inhibition of aurora kinase signalling as indicated by decreased phosphorylation of the aurora kinase substrate histone H3, cell cycle inhibition in G2/M phase, and induction of apoptosis. The activity of alisertib but not of tozasertib was affected by ABCB1 expression. Aurora kinase inhibitors induced a p53 response and their activity was enhanced in combination with the MDM2 inhibitor and p53 activator nutlin-3 in p53 wild-type cells. In conclusion, aurora kinases are potential drug targets in therapy-refractory neuroblastoma, in particular for the vast majority of p53 wild-type cases.
Journal Article
Multi-omics dissection of MAPK-driven senescence unveils therapeutic vulnerabilities in KIAA1549::BRAF-fusion pediatric low-grade glioma models
2025
Pilocytic astrocytomas (PA), the most common pediatric low-grade gliomas (pLGGs), are characterized by genetic MAPK pathway alterations leading to constitutive activation and oncogene-induced senescence (OIS) accompanied with the senescence-associated secretory phenotype (SASP). This study investigates the molecular mechanisms of signaling pathways regulating OIS and SASP in pLGGs using a multi-omics approach. We utilized senescent DKFZ-BT66 cells derived from a primary KIAA1549::BRAF-fusion positive PA to generate RNA-sequencing and phospho-/proteomic datasets before and after treatment with the MEK inhibitor trametinib. Multi-omics factor analysis (MEFISTO) and single sample gene set enrichment analysis (ssGSEA) were employed to identify key OIS effectors and differentially regulated pathways upon MAPK inhibition. Trametinib treatment inhibited MAPK activity, OIS and SASP signatures across all omics levels, functionally underscored by reduced sensitivity towards senolytic drugs. We constructed a pathway network using a prior knowledge approach, mapping
n
= 106 upregulated and
n
= 84 downregulated direct downstream effectors of MAPK leading to OIS/SASP. These effectors are associated with better progression-free survival in pLGG patients, independent of tumor site, level of resection, and genetic aberration. Several compounds targeting signaling nodes (SOD-1, IRS1, CDK1/2, CK2) involved in OIS and under MAPK control were identified, of which
n
= 4 were validated in an additional primary KIAA1549::BRAF fusion pLGG model as potential new therapeutic vulnerabilities for the treatment of pLGG. Our unbiased multi-omics signaling pathway analysis identifies a specific and comprehensive network of MAPK-OIS-SASP interdependencies in pLGGs and suggests new therapeutic strategies for these tumors.
Journal Article
MOST wanted: navigating the MAPK-OIS-SASP-tumor microenvironment axis in primary pediatric low-grade glioma and preclinical models
by
Milde, Till
,
Sigaud, Romain
,
Selt, Florian
in
Animals
,
Brain Neoplasms - pathology
,
Cellular Senescence - physiology
2024
Understanding the molecular and cellular mechanisms driving pediatric low-grade glioma (pLGG)—the most prevalent brain tumor in children—is essential for the identification and evaluation of novel effective treatments. This review explores the intricate relationship between the mitogen-activated protein kinase (MAPK) pathway, oncogene-induced senescence (OIS), the senescence-associated secretory phenotype (SASP), and the tumor microenvironment (TME), integrating these elements into a unified framework termed the MAPK/OIS/SASP/TME (MOST) axis. This integrated approach seeks to deepen our understanding of pLGG and improve therapeutic interventions by examining the MOST axis’ critical influence on tumor biology and response to treatment. In this review, we assess the axis’ capacity to integrate various biological processes, highlighting new targets for pLGG treatment, and the need for characterized in vitro and in vivo preclinical models recapitulating pLGG’s complexity to test targets. The review underscores the need for a comprehensive strategy in pLGG research, positioning the MOST axis as a pivotal approach in understanding pLGG. This comprehensive framework will open promising avenues for patient care and guide future research towards inventive treatment options.
Journal Article
PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum
by
Peterziel Heike
,
Schmid, Simone
,
Beck Pengbo
in
Brain cancer
,
Brain tumors
,
Central nervous system
2021
Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.
Journal Article
MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas
2023
Pediatric low-grade gliomas (pLGG) show heterogeneous responses to MAPK inhibitors (MAPKi) in clinical trials. Thus, more complex stratification biomarkers are needed to identify patients likely to benefit from MAPKi therapy. Here, we identify MAPK-related genes enriched in MAPKi-sensitive cell lines using the GDSC dataset and apply them to calculate class-specific MAPKi sensitivity scores (MSSs) via single-sample gene set enrichment analysis. The MSSs discriminate MAPKi-sensitive and non-sensitive cells in the GDSC dataset and significantly correlate with response to MAPKi in an independent PDX dataset. The MSSs discern gliomas with varying MAPK alterations and are higher in pLGG compared to other pediatric CNS tumors. Heterogenous MSSs within pLGGs with the same MAPK alteration identify proportions of potentially sensitive patients. The MEKi MSS predicts treatment response in a small set of pLGG patients treated with trametinib. High MSSs correlate with a higher immune cell infiltration, with high expression in the microglia compartment in single-cell RNA sequencing data, while low MSSs correlate with low immune infiltration and increased neuronal score. The MSSs represent predictive tools for the stratification of pLGG patients and should be prospectively validated in clinical trials. Our data supports a role for microglia in the response to MAPKi.
The MAPK pathway is a key driver of pediatric low-grade gliomas (pLGG); however, response to MAPK inhibitors (MAPKi) in pLGG patients is not consistent. Here, the authors develop MAPKi sensitivity scores (MSS) to predict response to MAPKi and apply them to bulk and single-cell sequencing datasets from pLGG patients and preclinical models.
Journal Article
Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions
by
Brandner, Sebastian
,
Shi, Zhi-Feng
,
Aldape, Kenneth
in
Analysis
,
Biomarkers, Tumor - genetics
,
Brain - pathology
2023
Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors—distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (
n
= 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed
ATRX
alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly
NTRK1-3
) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of
CDKN2A/B
in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (
n
= 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with
ATRX
alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in
ATRX
and homozygous deletions of
CDKN2A/B
. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.
Journal Article