Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Seman, Laio Oriel"
Sort by:
Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model
The predictive maintenance of electrical machines is a critical issue for companies, as it can greatly reduce maintenance costs, increase efficiency, and minimize downtime. In this paper, the issue of predicting electrical machine failures by predicting possible anomalies in the data is addressed through time series analysis. The time series data are from a sensor attached to an electrical machine (motor) measuring vibration variations in three axes: X (axial), Y (radial), and Z (radial X). The dataset is used to train a hybrid convolutional neural network with long short-term memory (CNN-LSTM) architecture. By employing quantile regression at the network output, the proposed approach aims to manage the uncertainties present in the data. The application of the hybrid CNN-LSTM attention-based model, combined with the use of quantile regression to capture uncertainties, yielded superior results compared to traditional reference models. These results can benefit companies by optimizing their maintenance schedules and improving the overall performance of their electric machines.
Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices
The cost of electricity and gas has a direct influence on the everyday routines of people who rely on these resources to keep their businesses running. However, the value of electricity is strongly related to spot market prices, and the arrival of winter and increased energy use owing to the demand for heating can lead to an increase in energy prices. Approaches to forecasting energy costs have been used in recent years; however, existing models are not yet robust enough due to competition, seasonal changes, and other variables. More effective modeling and forecasting approaches are required to assist investors in planning their bidding strategies and regulators in ensuring the security and stability of energy markets. In the literature, there is considerable interest in building better pricing modeling and forecasting frameworks to meet these difficulties. In this context, this work proposes combining seasonal and trend decomposition utilizing LOESS (locally estimated scatterplot smoothing) and Facebook Prophet methodologies to perform a more accurate and resilient time series analysis of Italian electricity spot prices. This can assist in enhancing projections and better understanding the variables driving the data, while also including additional information such as holidays and special events. The combination of approaches improves forecast accuracy while lowering the mean absolute percentage error (MAPE) performance metric by 18% compared to the baseline model.
Performance and Security Evaluation on a Blockchain Architecture for License Plate Recognition Systems
Since the early 2000s, life in cities has changed significantly due to the Internet of Things (IoT). This concept enables developers to integrate different devices collecting, storing, and processing a large amount of data, enabling new services to improve various professional and personal activities. However, privacy issues arise with a large amount of data generated, and solutions based on blockchain technology and smart contract have been developed to address these issues. Nevertheless, several issues must still be taken into account when developing blockchain architectures aimed at the IoT scenario because security flaws still exist in smart contracts, mainly due to the lack of ease when building the code. This article presents a blockchain storage architecture focused on license plate recognition (LPR) systems for smart cities focusing on privacy, performance, and security. The proposed architecture relies on the Ethereum platform. Each smart contract matches the privacy preferences of a license plate to be anonymized through public encryption. The storage of data captured by the LPR system can only be done if the smart contract enables it. However, in the case of motivation foreseen by the legislation, a competent user can change the smart contract and enable the storage of the data captured by the LPR system. Experimental results show that the performance of the proposed architecture is satisfactory, regarding the scalability of the built private network. Furthermore, tests on our smart contract using security and structure analysis tools on the developed script demonstrate that our solution is fraud-proof. The results obtained in all experiments bring evidence that our architecture is feasible to be used in real scenarios.
Video-Based Human Activity Recognition Using Deep Learning Approaches
Due to its capacity to gather vast, high-level data about human activity from wearable or stationary sensors, human activity recognition substantially impacts people’s day-to-day lives. Multiple people and things may be seen acting in the video, dispersed throughout the frame in various places. Because of this, modeling the interactions between many entities in spatial dimensions is necessary for visual reasoning in the action recognition task. The main aim of this paper is to evaluate and map the current scenario of human actions in red, green, and blue videos, based on deep learning models. A residual network (ResNet) and a vision transformer architecture (ViT) with a semi-supervised learning approach are evaluated. The DINO (self-DIstillation with NO labels) is used to enhance the potential of the ResNet and ViT. The evaluated benchmark is the human motion database (HMDB51), which tries to better capture the richness and complexity of human actions. The obtained results for video classification with the proposed ViT are promising based on performance metrics and results from the recent literature. The results obtained using a bi-dimensional ViT with long short-term memory demonstrated great performance in human action recognition when applied to the HMDB51 dataset. The mentioned architecture presented 96.7 ± 0.35% and 41.0 ± 0.27% in terms of accuracy (mean ± standard deviation values) in the train and test phases of the HMDB51 dataset, respectively.
Optimized EWT-Seq2Seq-LSTM with Attention Mechanism to Insulators Fault Prediction
Insulators installed outdoors are vulnerable to the accumulation of contaminants on their surface, which raise their conductivity and increase leakage current until a flashover occurs. To improve the reliability of the electrical power system, it is possible to evaluate the development of the fault in relation to the increase in leakage current and thus predict whether a shutdown may occur. This paper proposes the use of empirical wavelet transform (EWT) to reduce the influence of non-representative variations and combines the attention mechanism with a long short-term memory (LSTM) recurrent network for prediction. The Optuna framework has been applied for hyperparameter optimization, resulting in a method called optimized EWT-Seq2Seq-LSTM with attention. The proposed model had a 10.17% lower mean square error (MSE) than the standard LSTM and a 5.36% lower MSE than the model without optimization, showing that the attention mechanism and hyperparameter optimization is a promising strategy.
Instance and Data Generation for the Offline Nanosatellite Task Scheduling Problem
This paper discusses several cases of the Offline Nanosatellite Task Scheduling (ONTS) optimization problem, which seeks to schedule the start and finish timings of payloads on a nanosatellite. Modeled after the FloripaSat-I mission, a nanosatellite, the examples were built expressly to test the performance of various solutions to the ONTS problem. Realistic input data for power harvesting calculations were used to generate the instances, and an instance creation procedure was employed to increase the instances’ difficulty. The instances are made accessible to the public to facilitate a fair comparison of various solutions and to aid in establishing a baseline for the ONTS problem. Additionally, the study discusses the various orbit types and their effects on energy harvesting and mission performance.
The role of entrepreneurial orientation, organizational learning capability and service innovation in organizational performance
PurposeThe purpose of this study is to analyze the relationships between Entrepreneurial Orientation, Organizational Learning Capability, Service Innovation and Organizational Performance. To this end, it was sought to analyze the mediating role of organizational learning capability and service innovation within entrepreneurial orientation and organizational performance relationship in knowledge-intensive organizations.Design/methodology/approachThe sample consisted of 159 architecture and urbanism companies from Santa Catarina, Brazil. The study opted to use managers as key informants since they are the ones that have general information about the organization and are a valuable source for assessing the different variables of the organization. For data analysis, the PLS-PM algorithm (Partial Least Squares Path Modeling) was used.FindingsResults showed that entrepreneurial orientation is a strong driver of service innovation and organizational performance. Organizational learning capability acts as a facilitator of innovation and has a positive influence on organizational performance. Another theoretical contribution of this study to organizational learning capability is the confirmation of its mediation in service innovation and organizational performance. Management needs to make its organization more proactive and creative, continually promoting new ideas. Architecture and urbanism organizations should pay more attention to maintaining and promoting entrepreneurial orientation permanently. The trend toward both proactivity and risk-taking can be an inherent advantage of these knowledge-intensive business services.Originality/valueFew studies have explored the mediating role of organizational learning capability and service innovations in organizational performance. In particular, the combined effects of entrepreneurial orientation and organizational learning capability have been neglected by the knowledge-intensive organizations literature. The study is justified by providing a more complete view of the relationship between entrepreneurial orientation and the performance of knowledge-intensive organizations, highlighting the role of organizational learning capability and performance in service innovation.
Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction
Disruptive failures threaten the reliability of electric supply in power branches, often indicated by the rise of leakage current in distribution insulators. This paper presents a novel, hybrid method for fault prediction based on the time series of the leakage current of contaminated insulators. In a controlled high-voltage laboratory simulation, 15 kV-class insulators from an electrical power distribution network were exposed to increasing contamination in a salt chamber. The leakage current was recorded over 28 h of effective exposure, culminating in a flashover in all considered insulators. This flashover event served as the prediction mark that this paper proposes to evaluate. The proposed method applies the Christiano–Fitzgerald random walk (CFRW) filter for trend decomposition and the group data-handling (GMDH) method for time series prediction. The CFRW filter, with its versatility, proved to be more effective than the seasonal decomposition using moving averages in reducing non-linearities. The CFRW-GMDH method, with a root-mean-squared error of 3.44×10−12, outperformed both the standard GMDH and long short-term memory models in fault prediction. This superior performance suggested that the CFRW-GMDH method is a promising tool for predicting faults in power grid insulators based on leakage current data. This approach can provide power utilities with a reliable tool for monitoring insulator health and predicting failures, thereby enhancing the reliability of the power supply.
Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico
The energy price influences the interest in investment, which leads to economic development. An estimate of the future energy price can support the planning of industrial expansions and provide information to avoid times of recession. This paper evaluates adaptive boosting (AdaBoost), bootstrap aggregation (bagging), gradient boosting, histogram-based gradient boosting, and random forest ensemble learning models for forecasting energy prices in Latin America, especially in a case study about Mexico. Seasonal decomposition of the time series is used to reduce unrepresentative variations. The Optuna using tree-structured Parzen estimator, optimizes the structure of the ensembles through a voter by combining several ensemble frameworks; thus an optimized hybrid ensemble learning method is proposed. The results show that the proposed method has a higher performance than the state-of-the-art ensemble learning methods, with a mean squared error of 3.37 × 10−9 in the testing phase.
Random Convolutional Kernel Transform with Empirical Mode Decomposition for Classification of Insulators from Power Grid
The electrical energy supply relies on the satisfactory operation of insulators. The ultrasound recorded from insulators in different conditions has a time series output, which can be used to classify faulty insulators. The random convolutional kernel transform (Rocket) algorithms use convolutional filters to extract various features from the time series data. This paper proposes a combination of Rocket algorithms, machine learning classifiers, and empirical mode decomposition (EMD) methods, such as complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The results show that the EMD methods, combined with MiniRocket, significantly improve the accuracy of logistic regression in insulator fault diagnosis. The proposed strategy achieves an accuracy of 0.992 using CEEMDAN, 0.995 with EWT, and 0.980 with VMD. These results highlight the potential of incorporating EMD methods in insulator failure detection models to enhance the safety and dependability of power systems.