Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
147
result(s) for
"Semple, Scott"
Sort by:
Early breast milk exposure modifies brain connectivity in preterm infants
2019
Preterm infants are at increased risk of alterations in brain structure and connectivity, and subsequent neurocognitive impairment. Breast milk may be more advantageous than formula feed for promoting brain development in infants born at term, but uncertainties remain about its effect on preterm brain development and the optimal nutritional regimen for preterm infants. We test the hypothesis that breast milk exposure is associated with improved markers of brain development and connectivity in preterm infants at term equivalent age.
We collected information about neonatal breast milk exposure and brain MRI at term equivalent age from 47 preterm infants (mean postmenstrual age [PMA] 29.43 weeks, range 23.28–33.0). Network-Based Statistics (NBS), Tract-based Spatial Statistics (TBSS) and volumetric analysis were used to investigate the effect of breast milk exposure on white matter water diffusion parameters, tissue volumes, and the structural connectome.
Twenty-seven infants received exclusive breast milk feeds for ≥75% of days of in-patient care and this was associated with higher connectivity in the fractional anisotropy (FA)-weighted connectome compared with the group who had < 75% of days receiving exclusive breast milk feeds (NBS, p = 0.04). Within the TBSS white matter skeleton, the group that received ≥75% exclusive breast milk days exhibited higher FA within the corpus callosum, cingulum cingulate gyri, centrum semiovale, corticospinal tracts, arcuate fasciculi and posterior limbs of the internal capsule compared with the low exposure group after adjustment for PMA at birth, PMA at image acquisition, bronchopulmonary dysplasia, and chorioamnionitis (p < 0.05). The effect on structural connectivity and tract water diffusion parameters was greater with ≥90% exposure, suggesting a dose effect. There were no significant groupwise differences in brain volumes.
Breast milk feeding in the weeks after preterm birth is associated with improved structural connectivity of developing networks and greater FA in major white matter fasciculi.
Journal Article
Clinical implications of bone marrow adiposity identified by phenome-wide association and Mendelian randomization in the UK Biobank
2025
Bone marrow adiposity changes in diverse diseases, but the full scope of these, and whether they are directly influenced by marrow adiposity, remains unknown. To address this, we previously measured the bone marrow fat fraction of the femoral head, total hip, femoral diaphysis, and spine of over 48,000 UK Biobank participants. Here, we first use these data for PheWAS to identify diseases associated with marrow adiposity at each site. This reveals associations with 47 incident diseases across 12 disease categories, including osteoporosis, fracture, type 2 diabetes, cardiovascular diseases, cancers, and other conditions that burden public health worldwide. Intriguingly, type 2 diabetes associates positively with spine bone marrow adiposity but negatively with marrow adiposity at femoral sites. We then establish PRSs based on bone-marrow-fat-fraction-associated SNPs and use PRS-PheWAS and Mendelian randomization to explore causal associations between marrow adiposity and disease. PRS-PheWAS reveals that genetic predisposition to increased marrow adiposity is positively associated with osteoporosis and fractures. Mendelian randomization further suggests that increased marrow adiposity at the diaphysis and total hip is causally associated with osteoporosis. Our findings substantially advance understanding of how marrow adiposity impacts human health and highlight its potential as a biomarker and/or therapeutic target for diverse human diseases.
Bone marrow adipose tissue accounts for almost 10% of human fat mass, but its roles remain unclear. Here, Xu et al. identify more than 45 diseases linked to marrow adiposity in over 48,000 people, including causal roles in musculoskeletal disease.
Journal Article
Manganese-enhanced MRI of the myocardium
by
Spath, Nick B
,
Semple, Scott I K
,
Baker, Andrew H
in
Animals
,
Calcium Signaling
,
Cardiomyocytes
2019
Gadolinium-based contrast media are widely used in cardiovascular MRI to identify and to highlight the intravascular and extracellular space. After gadolinium, manganese has the second highest paramagnetic moment and was one of the first MRI contrast agents assessed in humans. Over the last 50 years, manganese-enhanced MRI (MEMRI) has emerged as a complementary approach enabling intracellular myocardial contrast imaging that can identify functional myocardium through its ability to act as a calcium analogue. Early progress was limited by its potential to cause myocardial depression. To overcome this problem, two clinical formulations of manganese were developed using either chelation (manganese dipyridoxyl diphosphate) or coadministration with a calcium compound (EVP1001-1, Eagle Vision Pharmaceuticals). Preclinical studies have demonstrated the efficacy of MEMRI in quantifying myocardial infarction and detecting myocardial viability as well as tracking altered contractility and calcium handling in cardiomyopathy. Recent clinical data suggest that MEMRI has exciting potential in the quantification of myocardial viability in ischaemic cardiomyopathy, the early detection of abnormalities in myocardial calcium handling, and ultimately, in the development of novel therapies for myocardial infarction or heart failure by actively quantifying viable myocardium. The stage is now set for wider clinical translational study of this novel and promising non-invasive imaging modality.
Journal Article
MRI and CT coronary angiography in survivors of COVID-19
2022
ObjectivesTo determine the contribution of comorbidities on the reported widespread myocardial abnormalities in patients with recent COVID-19.MethodsIn a prospective two-centre observational study, patients hospitalised with confirmed COVID-19 underwent gadolinium and manganese-enhanced MRI and CT coronary angiography (CTCA). They were compared with healthy and comorbidity-matched volunteers after blinded analysis.ResultsIn 52 patients (median age: 54 (IQR 51–57) years, 39 males) who recovered from COVID-19, one-third (n=15, 29%) were admitted to intensive care and a fifth (n=11, 21%) were ventilated. Twenty-three patients underwent CTCA, with one-third having underlying coronary artery disease (n=8, 35%). Compared with younger healthy volunteers (n=10), patients demonstrated reduced left (ejection fraction (EF): 57.4±11.1 (95% CI 54.0 to 60.1) versus 66.3±5 (95 CI 62.4 to 69.8)%; p=0.02) and right (EF: 51.7±9.1 (95% CI 53.9 to 60.1) vs 60.5±4.9 (95% CI 57.1 to 63.2)%; p≤0.0001) ventricular systolic function with elevated native T1 values (1225±46 (95% CI 1205 to 1240) vs 1197±30 (95% CI 1178 to 1216) ms;p=0.04) and extracellular volume fraction (ECV) (31±4 (95% CI 29.6 to 32.1) vs 24±3 (95% CI 22.4 to 26.4)%; p<0.0003) but reduced myocardial manganese uptake (6.9±0.9 (95% CI 6.5 to 7.3) vs 7.9±1.2 (95% CI 7.4 to 8.5) mL/100 g/min; p=0.01). Compared with comorbidity-matched volunteers (n=26), patients had preserved left ventricular function but reduced right ventricular systolic function (EF: 51.7±9.1 (95% CI 53.9 to 60.1) vs 59.3±4.9 (95% CI 51.0 to 66.5)%; p=0.0005) with comparable native T1 values (1225±46 (95% CI 1205 to 1240) vs 1227±51 (95% CI 1208 to 1246) ms; p=0.99), ECV (31±4 (95% CI 29.6 to 32.1) vs 29±5 (95% CI 27.0 to 31.2)%; p=0.35), presence of late gadolinium enhancement and manganese uptake. These findings remained irrespective of COVID-19 disease severity, presence of myocardial injury or ongoing symptoms.ConclusionsPatients demonstrate right but not left ventricular dysfunction. Previous reports of left ventricular myocardial abnormalities following COVID-19 may reflect pre-existing comorbidities.Trial registration numberNCT04625075.
Journal Article
Association between preterm brain injury and exposure to chorioamnionitis during fetal life
by
Sparrow, Sarah
,
Wilkinson, Alastair Graham
,
Boardman, James P.
in
631/1647/245/1628
,
631/1647/245/2149
,
692/308/3187
2016
Preterm infants are susceptible to inflammation-induced white matter injury but the exposures that lead to this are uncertain. Histologic chorioamnionitis (HCA) reflects intrauterine inflammation, can trigger a fetal inflammatory response, and is closely associated with premature birth. In a cohort of 90 preterm infants with detailed placental histology and neonatal brain magnetic resonance imaging (MRI) data at term equivalent age, we used Tract-based Spatial Statistics (TBSS) to perform voxel-wise statistical comparison of fractional anisotropy (FA) data and computational morphometry analysis to compute the volumes of whole brain, tissue compartments and cerebrospinal fluid, to test the hypothesis that HCA is an independent antenatal risk factor for preterm brain injury. Twenty-six (29%) infants had HCA and this was associated with decreased FA in the genu, cingulum cingulate gyri, centrum semiovale, inferior longitudinal fasciculi, limbs of the internal capsule, external capsule and cerebellum (
p
< 0.05, corrected), independent of degree of prematurity, bronchopulmonary dysplasia and postnatal sepsis. This suggests that diffuse white matter injury begins
in utero
for a significant proportion of preterm infants, which focuses attention on the development of methods for detecting fetuses and placentas at risk as a means of reducing preterm brain injury.
Journal Article
Ferumoxytol-enhanced magnetic resonance imaging assessing inflammation after myocardial infarction
2017
ObjectivesMacrophages play a central role in the cellular inflammatory response to myocardial infarction (MI) and predict subsequent clinical outcomes. We aimed to assess temporal changes in cellular inflammation and tissue oedema in patients with acute MI using ultrasmallsuperparamagnetic particles of iron oxide (USPIO)-enhanced MRI.MethodsThirty-one patients were recruited following acute MI and followed up for 3 months with repeated T2 and USPIO-enhanced T2*-mapping MRI. Regions of interest were categorised into infarct, peri-infarct and remote myocardial zones, and compared with control tissues.ResultsFollowing a single dose, USPIO enhancement was detected in the myocardium until 24 hours (p<0.0001). Histology confirmed colocalisation of iron and macrophages within the infarcted, but not the non-infarcted, myocardium. Following repeated doses, USPIO uptake in the infarct zone peaked at days 2–3, and greater USPIO uptake was detected in the infarct zone compared with remote myocardium until days 10–16 (p<0.05). In contrast, T2-defined myocardial oedema peaked at days 3–9 and remained increased in the infarct zone throughout the 3-month follow-up period (p<0.01).ConclusionMyocardial macrophage activity can be detected using USPIO-enhanced MRI in the first 2 weeks following acute MI. This observed pattern of cellular inflammation is distinct, and provides complementary information to the more prolonged myocardial oedema detectable using T2 mapping. This imaging technique holds promise as a non-invasive method of assessing and monitoring myocardial cellular inflammation with potential application to diagnosis, risk stratification and assessment of novel anti-inflammatory therapeutic interventions.Trial registration numberTrial registration number: 14663. Registered on UK Clinical Research Network (http://public.ukcrn.org.uk) and also ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT02319278?term=DECIFER&rank=2).
Journal Article
Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide
by
Richards, Jennifer
,
Tse, George
,
Newby, David E.
in
Angiology
,
Animals
,
Arteries - metabolism
2015
Cardiovascular Magnetic Resonance (CMR) has become a primary tool for non-invasive assessment of cardiovascular anatomy, pathology and function. Existing contrast agents have been utilised for the identification of infarction, fibrosis, perfusion deficits and for angiography. Novel ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast agents that are taken up by inflammatory cells can detect cellular inflammation non-invasively using CMR, potentially aiding the diagnosis of inflammatory medical conditions, guiding their treatment and giving insight into their pathophysiology. In this review we describe the utilization of USPIO as a novel contrast agent in vascular disease.
Journal Article
Multiparametric magnetic resonance imaging for quantitation of liver disease: a two-centre cross-sectional observational study
by
Neil, Desley A. H.
,
Brown, Rachel M.
,
Herlihy, Amy H.
in
59/57
,
692/308/53/2421
,
692/4020/4021/1607
2018
Liver
MultiScan
is an emerging diagnostic tool using multiparametric MRI to quantify liver disease. In a two-centre prospective validation study, 161 consecutive adult patients who had clinically-indicated liver biopsies underwent contemporaneous non-contrast multiparametric MRI at 3.0 tesla (proton density fat fraction (PDFF), T1 and T2* mapping), transient elastography (TE) and Enhanced Liver Fibrosis (ELF) test. Non-invasive liver tests were correlated with gold standard histothological measures. Reproducibility of Liver
MultiScan
was investigated in 22 healthy volunteers. Iron-corrected T1 (cT1), TE, and ELF demonstrated a positive correlation with hepatic collagen proportionate area (all
p
< 0·001). TE was superior to ELF and cT1 for predicting fibrosis stage. cT1 maintained good predictive accuracy for diagnosing significant fibrosis in cases with indeterminate ELF, but not for cases with indeterminate TE values. PDFF had high predictive accuracy for individual steatosis grades, with AUROCs ranging from 0.90–0.94. T2* mapping diagnosed iron accumulation with AUROC of 0.79 (95% CI: 0.67–0.92) and negative predictive value of 96%. Liver
MultiScan
showed excellent test/re-test reliability (coefficients of variation ranging from 1.4% to 2.8% for cT1). Overall failure rates for Liver
MultiScan
, ELF and TE were 4.3%, 1.9% and 15%, respectively. Liver
MultiScan
is an emerging point-of-care diagnostic tool that is comparable with the established non-invasive tests for assessment of liver fibrosis, whilst at the same time offering a superior technical success rate and contemporaneous measurement of liver steatosis and iron accumulation.
Journal Article
Use of new imaging techniques to predict tumour response to therapy
by
Parkin, David E
,
Harry, Vanessa N
,
Semple, Scott I
in
Animals
,
Antineoplastic Agents - therapeutic use
,
Biomarkers
2010
Imaging of tumour response to therapy has steadily evolved over the past few years as a result of advances in existing imaging modalities and the introduction of new functional techniques. The use of imaging as an early surrogate biomarker of response is appealing, because it might allow for a window of opportunity during which treatment regimens can be tailored accordingly, depending on the expected response. The clinical effect of this would ultimately result in a reduction in morbidity and undue costs. The aim of this review is to describe the potential of various new imaging techniques as biomarkers of early tumour response. We have reviewed the literature and identified studies that have assessed these techniques, such as diffusion-weighted MRI, dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, and 18-fluorodeoxyglucose-PET as early response indicators, and highlight the current clinical awareness of their use.
Journal Article
MRI Relaxometry for Quantitative Analysis of USPIO Uptake in Cerebral Small Vessel Disease
2019
A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24–30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24–30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24–30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24–30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak.
Journal Article