Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Senapathi, Deepa"
Sort by:
A global-scale expert assessment of drivers and risks associated with pollinator decline
2021
Pollinator decline has attracted global attention and substantial efforts are underway to respond through national pollinator strategies and action plans. These policy responses require clarity on what is driving pollinator decline and what risks it generates for society in different parts of the world. Using a formal expert elicitation process, we evaluated the relative regional and global importance of eight drivers of pollinator decline and ten consequent risks to human well-being. Our results indicate that global policy responses should focus on reducing pressure from changes in land cover and configuration, land management and pesticides, as these were considered very important drivers in most regions. We quantify how the importance of drivers and risks from pollinator decline, differ among regions. For example, losing access to managed pollinators was considered a serious risk only for people in North America, whereas yield instability in pollinator-dependent crops was classed as a serious or high risk in four regions but only a moderate risk in Europe and North America. Overall, perceived risks were substantially higher in the Global South. Despite extensive research on pollinator decline, our analysis reveals considerable scientific uncertainty about what this means for human society.
The predominant threats to pollinators vary across locations, as do perceptions of the consequences of pollinator loss. Here, the authors use formal expert elicitation methods to identify how pollination conservation experts rank the various drivers of pollinator decline and the range of risks to humans if pollination activity is lost.
Journal Article
Wild insect diversity increases inter-annual stability in global crop pollinator communities
by
Jha, Shalene
,
Mandelik, Yael
,
Albrecht, Matthias
in
Agricultural and Veterinary sciences
,
Agriculture
,
Animals
2021
While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.
Journal Article
The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England
by
Kunin, William E.
,
McKerchar, Megan
,
Morton, R. Daniel
in
Animals
,
Bees - physiology
,
Biodiversity
2015
Change in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators. Land cover changes within sites, as well as changes within a 1 km radius outside the sites, have significant effects on richness and composition of bee and wasp species, with changes in edge habitats between major land classes also having a key influence. Our results highlight not just the land cover changes that may be detrimental to pollinator communities, but also provide an insight into how increases in habitat diversity may benefit species diversity, and could thus help inform policy and practice for future land management.
Journal Article
Beekeepers’ perceptions toward a new omics tool for monitoring bee health in Europe
by
Arafah, Karim
,
Raimets, Risto
,
Klein, Alexandra-Maria
in
Agricultural production
,
Animals
,
Apiculture
2025
Pressures on honey bee health have substantially increased both colony mortality and beekeepers’ costs for hive management across Europe. Although technological advances could offer cost-effective solutions to these challenges, there is little research into the incentives and barriers to technological adoption by beekeepers in Europe. Our study is the first to investigate beekeepers’ willingness to adopt the Bee Health Card, a molecular diagnostic tool developed within the PoshBee EU project which can rapidly assess bee health by monitoring molecular changes in bees. The Bee Health Card, based on MALDI BeeTyping®, is currently on level six of the Technology Readiness Level scale, meaning that the technology has been demonstrated in relevant environments. Using an on-line survey from seven European countries, we show that beekeepers recognise the potential for the tool to improve colony health, and that targeted economic incentives, such as subsidises, may help reduce cost being a barrier to the adoption and frequent use of the tool. Based on the description of the tool, 43% of beekeepers appear to be moderately confident in the effectiveness of the Bee Health Card. This confidence could increase if the tool was easy to use and not time consuming, and a higher confidence could also contribute to raising the probability of accepting extra costs linked to it. We estimate that, in the worst-case scenario, the cost per single use of the Bee Health Card should be between €47–90 across a range of European countries, depending on the labour and postage costs. However, the monetary benefits in terms of honey production could exceed this. In order to successfully tackle colony health issues, it is recommended using the BHC five times per year, from the end to the beginning of winter. Finally, we discuss the knowledge needs for assessing beekeeper health tools in future research.
Journal Article
Spatio‐temporal shifts in British wild bees in response to changing climate
by
Potts, Simon G.
,
Edwards, Mike
,
Senapathi, Deepa
in
Agricultural production
,
Bees
,
Biodiversity
2023
Climate plays a major role in determining where species occur, and when they are active throughout the year. In the face of a changing climate, many species are shifting their ranges poleward. Many species are also shifting their emergence phenology. Wild bees in Great Britain are susceptible to changes in climatic conditions but little is known about historic or potential future spatio‐temporal trends of many species. This study utilized a sliding window approach to assess the impacts of climate on bee emergence dates, estimating the best temperature window for predicting emergence dates for 88 species of wild bees. Using a ‘middle‐of‐the‐road’ (RCP 4.5) and ‘worst‐case’ (RCP 8.5) climate scenario for the period 2070–2079, predictions of future emergence dates were made. In general, the best predicting climate window occurred in the 0–3 months preceding emergence. Across the 40 species that showed a shift in emergence dates in response to a climate window, the mean advance was 13.4 days under RCP 4.5 and 24.9 days under RCP 8.5. Species distribution models (SDMs) were used to predict suitable climate envelopes under historic (1980–1989), current (2010–2019) and future (2070–2079 under RCP 4.5 and RCP 8.5 scenarios) climate conditions. These models predict that the climate envelope for 92% of studied species has increased since the 1980s, and for 97% and 93% of species under RCP 4.5 and RCP 8.5 respectively, this is predicted to continue, due to extension of the northern range boundary. While any range changes will be moderated by habitat availability, it highlights that Great Britain will likely experience northward shifts of bee populations in the future. By combining spatial and temporal trends, this work provides an important step towards informing conservation measures suitable for future climates, directing how interventions can be provided in the right place at the right time.
Climate change is driving spatio‐temporal shifts in many taxa, however the effects on British wild bees have not been quantified. We show that bees are emerging earlier in warmer years, and are predicted to continue to do so. Many bees have already shifted their distributions northwards, and are likley to continue to do so under future climate conditions.
Journal Article
Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan
by
Raimets, Risto
,
Knapp, Jessica L.
,
Maus, Christian
in
631/158
,
704/172
,
Agricultural and Veterinary sciences
2023
Managed bee species provide essential pollination services that contribute to food security worldwide. However, managed bees face a diverse array of threats and anticipating these, and potential opportunities to reduce risks, is essential for the sustainable management of pollination services. We conducted a horizon scanning exercise with 20 experts from across Europe to identify emerging threats and opportunities for managed bees in European agricultural systems. An initial 63 issues were identified, and this was shortlisted to 21 issues through the horizon scanning process. These ranged from local landscape-level management to geopolitical issues on a continental and global scale across seven broad themes—
Pesticides & pollutants, Technology, Management practices, Predators & parasites, Environmental stressors, Crop modification,
and
Political & trade influences
. While we conducted this horizon scan within a European context, the opportunities and threats identified will likely be relevant to other regions. A renewed research and policy focus, especially on the highest-ranking issues, is required to maximise the value of these opportunities and mitigate threats to maintain sustainable and healthy managed bee pollinators within agricultural systems.
Journal Article
Climate‐driven phenological shifts in emergence dates of British bees
2023
Climate change has a diverse range of impacts on wild bees, including their phenology or timing of life history events. Climate‐driven phenological shifts can not only impact individuals at species level but also threaten the vital pollination service that wild bees provide to both wild plants and cultivated crops. Despite their involvement in pollination, for most bee species, especially in Great Britain, little is known about phenological shifts. This study makes use of 40 years of presence‐only data for 88 species of wild bees to analyse shifts in emergence dates, both over time and in relation to temperature. The analyses reveal widespread advances in emergence dates of British wild bees, at an average rate of 0.40 ± 0.02 days per year since 1980 across all species in the study data set. Temperature is a key driver of this shift, with an average advance of 6.5 ± 0.2 days per 1°C warming. For change in emergence dates both over time and in relation to temperature, there was significant species‐specific variation, with 14 species showing significant advances over time and 67 showing significant advances in relation to temperature. Traits did not appear to explain variation in individual species' responses, with overwintering stage, lecty, emergence period and voltinism considered as possible explanatory traits. Pairwise comparisons showed no differences in sensitivity of emergence dates to increasing temperature between trait groups (groups of species which share all four traits) that differed by only one trait. These results highlight not only a direct impact of temperature on the phenology of wild bees themselves but also the species‐specific shifts highlight a possible impact on the temporal structure of bee communities and the pollination networks for which the wild bees are so crucial.
This study uses 40 years of data to assess trends in emergence dates of 88 species of wild bee in Great Britain. Changes in emergence dates varied between species, although there was a general trend of earlier advancement in warmer years, indicating some level of phenological sensitivity to climate change. These advances were poorly explained by life‐history traits.
Journal Article
Neither sulfoxaflor, Crithidia bombi, nor their combination impact bumble bee colony development or field bean pollination
2023
Many pollinators, including bumble bees, are in decline. Such declines are known to be driven by a number of interacting factors. Decreases in bee populations may also negatively impact the key ecosystem service, pollination, that they provide. Pesticides and parasites are often cited as two of the drivers of bee declines, particularly as they have previously been found to interact with one another to the detriment of bee health. Here we test the effects of an insecticide, sulfoxaflor, and a highly prevalent bumble bee parasite,
Crithidia bombi
, on the bumble bee
Bombus terrestris
. After exposing colonies to realistic doses of either sulfoxaflor and/or
Crithidia bombi
in a fully crossed experiment, colonies were allowed to forage on field beans in outdoor exclusion cages. Foraging performance was monitored, and the impacts on fruit set were recorded. We found no effect of either stressor, or their interaction, on the pollination services they provide to field beans, either at an individual level or a whole colony level. Further, there was no impact of any treatment, in any metric, on colony development. Our results contrast with prior findings that similar insecticides (neonicotinoids) impact pollination services, and that sulfoxaflor impacts colony development, potentially suggesting that sulfoxaflor is a less harmful compound to bee health than neonicotinoids insecticides.
Journal Article
A whole ecosystem approach to pear psyllid (Cacopsylla pyri) management in a changing climate
by
Fountain, Michelle T.
,
Senapathi, Deepa
,
Reeves, Laura A.
in
Advances in Entomology: Leading-edge Reviews on Hot Topics in Pest Science
,
Agricultural ecosystems
,
Agricultural practices
2024
Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between different factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (
Cacopsylla pyri
Linnaeus) within pear (
Pyrus communis
L.) orchards, focusing on potential disruptions as a result of climate change. Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could occur, impacting pest populations. This review aims to evaluate current strategies used in
C. pyri
management, discuss trophic interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of
C. pyri
as a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence gaps and outlines areas of future research.
Journal Article
Distribution of infectious and parasitic agents among three sentinel bee species across European agricultural landscapes
by
Schurr, Frank
,
Albrecht, Matthias
,
Dominik, Christophe
in
631/158/670
,
631/158/857
,
631/326/2521
2024
Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (
Apis mellifera
,
Bombus terrestris
and
Osmia bicornis
) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees’ IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.
Journal Article