Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
115 result(s) for "Sendtner, Michael"
Sort by:
Loss of synaptic Munc13-1 underlies neurotransmission abnormalities in spinal muscular atrophy
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease characterized by degeneration of spinal motoneurons, leading to muscle atrophy and synaptic loss. SMN functions in mRNA splicing, transport, and local translation are crucial for maintaining synaptic integrity. Within the presynaptic membrane, the active zone orchestrates the docking and priming of synaptic vesicles. The Munc13 family proteins are key active zone components that operate precise neurotransmitter release in conjunction with voltage-gated Ca 2+ channels (VGCCs). However, the role of Munc13s in synaptic dysfunction in SMA remains elusive. Our findings reveal that Munc13-1 loss, but not Munc13-2, is closely linked to synaptic aberrations in SMA. Specifically, Munc13-1 mRNA localization in axons is dependent on Smn, and its disruption leads to impaired AZ assembly and VGCC clustering in motoneurons, ultimately reducing neuronal activity. In contrast, Munc13-2 does not appear to be essential for AZ assembly or motoneuron differentiation, as its functions can be compensated by Munc13-1. These findings highlight the pivotal role of Munc13-1 in synapse integrity and point to potential therapeutic targets for mitigating synaptic loss in SMA.
Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders
Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis
An improved understanding of the cellular events that lead to motor neuron injury in amyotrophic lateral sclerosis (ALS) could highlight promising new therapeutic strategies. Pamela Shaw and colleagues provide a comprehensive overview of the numerous molecular mechanisms that are involved in ALS, including oxidative stress, mitochondrial dysfunction and excitotoxicity. They discuss features specific to motor neurons that might render this cell type vulnerable to damage, and highlight important links between cellular events and clinical features of the disease. Amyotrophic lateral sclerosis (ALS) is a genetically diverse disease. At least 15 ALS-associated gene loci have so far been identified, and the causative gene is known in approximately 30% of familial ALS cases. Less is known about the factors underlying the sporadic form of the disease. The molecular mechanisms of motor neuron degeneration are best understood in the subtype of disease caused by mutations in superoxide dismutase 1, with a current consensus that motor neuron injury is caused by a complex interplay between multiple pathogenic processes. A key recent finding is that mutated TAR DNA-binding protein 43 is a major constituent of the ubiquitinated protein inclusions in ALS, providing a possible link between the genetic mutation and the cellular pathology. New insights have also indicated the importance of dysregulated glial cell–motor neuron crosstalk, and have highlighted the vulnerability of the distal axonal compartment early in the disease course. In addition, recent studies have suggested that disordered RNA processing is likely to represent a major contributing factor to motor neuron disease. Ongoing research on the cellular pathways highlighted in this Review is predicted to open the door to new therapeutic interventions to slow disease progression in ALS. Key Points Multiple cellular events contribute to the pathobiology of amyotrophic lateral sclerosis (ALS), including oxidative stress, mitochondrial dysfunction, excitotoxicity, protein aggregation, impaired axonal transport, neuroinflammation, and dysregulated RNA signaling TAR DNA-binding protein 43 is a major constituent of the ubiquitinated protein inclusions found in surviving motor neurons in most forms of ALS Glial pathology and disruption of glial cell–motor neuron communication contribute to neurodegeneration and the propagation of motor neuron injury Understanding the links between molecular changes and clinical features of the disease should guide future therapeutic efforts Degenerative changes in motor neurons seem to affect the health of the distal axonal compartment at an early stage of disease, highlighting an important neuroprotective target
Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults
Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. •Exercise-related changes in BDNF, IGF, VEGF and PDGF were measured in older adults•Changes in hippocampal perfusion, volume (via 7T MRI) and memory were assessed•Fitness-related vascular hippocampal plasticity was not linked to growth factors•Changes in IGF-I, hippocampal volume and memory were linked independent of exercise•Potential reasons for negative findings and methodological shortcomings are discussed
Munc13-1 restoration mitigates presynaptic pathology in spinal muscular atrophy
Degeneration of neuromuscular synapses is a key pathological feature of spinal muscular atrophy (SMA), yet cellular mechanisms underlying synapse dysfunction remain elusive. Here, we show that pharmacological stimulation with Roscovitine triggers the assembly of Munc13-1 release sites that relies on its local translation. Our findings show that presynaptic mRNA levels and local synthesis of Munc13-1 are diminished in motoneurons from SMA mice and hiPSC-derived motoneurons from SMA patients. Replacement of the Munc13-1 3’UTR with that of Synaptophysin1 rescues Munc13-1 mRNA transport in SMA motoneurons and restores the nanoscale architecture of presynaptic Munc13-1 release sites. Restoration of Munc13-1 levels leads to functional synaptic recovery in cultured SMA motoneurons. Furthermore, SMA mice cross-bred with a conditional knock-in mouse expressing modified Munc13-1 with a heterologous 3’UTR display attenuated synapse and neurodegeneration and improved motor function. Identifying Munc13-1 as an SMA modifier underscores the potential of targeting synapses to mitigate neuromuscular dysfunction in SMA. Defective neurotransmission is a hallmark of spinal muscular atrophy (SMA). Here, the authors show that local presynaptic Munc13-1synthesis is defective in SMA and that modification of the Munc13-1 mRNA rescues presynaptic architecture and excitability.
Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr
The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3’ UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein. The neuronal RNA-binding protein Ptbp2 is known to regulate neuronal differentiation by modulating alternative splicing. Here, the authors reveal an additional role of cytosolic Ptbp2, which regulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein hnRNP R.
hnRNP R promotes O-GlcNAcylation of eIF4G and facilitates axonal protein synthesis
Motoneurons critically depend on precise spatial and temporal control of translation for axon growth and the establishment and maintenance of neuromuscular connections. While defects in local translation have been implicated in the pathogenesis of motoneuron disorders, little is known about the mechanisms regulating axonal protein synthesis. Here, we report that motoneurons derived from Hnrnpr knockout mice show reduced axon growth accompanied by lowered synthesis of cytoskeletal and synaptic components in axons. Mutant mice display denervated neuromuscular junctions and impaired motor behavior. In axons, hnRNP R is a component of translation initiation complexes and, through interaction with O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (Ogt), modulates O-GlcNAcylation of eIF4G. Restoring axonal O-GlcNAc levels rescued local protein synthesis and axon growth defects of hnRNP R knockout motoneurons. Together, these findings demonstrate a function of hnRNP R in controlling the local production of key factors required for axon growth and formation of neuromuscular innervations. HnRNP R regulates the axonal transcriptome. Here the authors show that hnRNP R is a component of translation initiation complexes and interacts with O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (Ogt), promoting O-GlcNAcylation of eIF4G.
Na+- d -glucose Cotransporter SGLT1 is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion
To clarify the physiological role of Na(+)-D-glucose cotransporter SGLT1 in small intestine and kidney, Sglt1(-/-) mice were generated and characterized phenotypically. After gavage of d-glucose, small intestinal glucose absorption across the brush-border membrane (BBM) via SGLT1 and GLUT2 were analyzed. Glucose-induced secretion of insulinotropic hormone (GIP) and glucagon-like peptide 1 (GLP-1) in wild-type and Sglt1(-/-) mice were compared. The impact of SGLT1 on renal glucose handling was investigated by micropuncture studies. It was observed that Sglt1(-/-) mice developed a glucose-galactose malabsorption syndrome but thrive normally when fed a glucose-galactose-free diet. In wild-type mice, passage of D-glucose across the intestinal BBM was predominantly mediated by SGLT1, independent the glucose load. High glucose concentrations increased the amounts of SGLT1 and GLUT2 in the BBM, and SGLT1 was required for upregulation of GLUT2. SGLT1 was located in luminal membranes of cells immunopositive for GIP and GLP-1, and Sglt1(-/-) mice exhibited reduced glucose-triggered GIP and GLP-1 levels. In the kidney, SGLT1 reabsorbed ∼3% of the filtered glucose under normoglycemic conditions. The data indicate that SGLT1 is 1) pivotal for intestinal mass absorption of d-glucose, 2) triggers the glucose-induced secretion of GIP and GLP-1, and 3) triggers the upregulation of GLUT2.
Cooperation of Tyrosine Kinase Receptor TrkB and Epidermal Growth Factor Receptor Signaling Enhances Migration and Dispersal of Lung Tumor Cells
TrkB mediates the effects of brain-derived neurotrophic factor (BDNF) in neuronal and nonnneuronal cells. Based on recent reports that TrkB can also be transactivated through epidermal growth-factor receptor (EGFR) signaling and thus regulates migration of early neurons, we investigated the role of TrkB in migration of lung tumor cells. Early metastasis remains a major challenge in the clinical management of non-small cell lung cancer (NSCLC). TrkB receptor signaling is associated with metastasis and poor patient prognosis in NSCLC. Expression of this receptor in A549 cells and in another adenocarcinoma cell line, NCI-H441, promoted enhanced migratory capacity in wound healing assays in the presence of the TrkB ligand BDNF. Furthermore, TrkB expression in A549 cells potentiated the stimulatory effect of EGF in wound healing and in Boyden chamber migration experiments. Consistent with a potential loss of cell polarity upon TrkB expression, cell dispersal and de-clustering was induced in A549 cells independently of exogeneous BDNF. Morphological transformation involved extensive cytoskeletal changes, reduced E-cadherin expression and suppression of E-cadherin expression on the cell surface in TrkB expressing tumor cells. This function depended on MEK and Akt kinase activity but was independent of Src. These data indicate that TrkB expression in lung adenoma cells is an early step in tumor cell dissemination, and thus could represent a target for therapy development.
BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson’s Disease and Dystonia
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson’s Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.